
Timers and Animation

1

Animation
Made by drawing a sequence of images in succession, giving the

impression of motion when played back.

One way to generate these images is to
interpolate between keyframes. This is

mostly how we've animated things in this
class so far.

2

Image-Based Animation

3

We can also just load and display a bunch of images!

These images can be hand-drawn (as in the
case of flipbook animations) or created in

animation programs like After Effects or Flash

4

Loading Animations in Processing

Same principle as loading a single image
into a PImage, but now we need

multiple of them!

Load images into an array, storing them
in animation order.

But uh...

PImage animation[100];
animation[0] = loadImage("anim-0.png");
animation[1] = loadImage("anim-1.png");
animation[2] = loadImage("anim-2.png");
// Yuck

1
2
3
4
5

5

Image Animations in Processing
The nf() function formats a number into a string. This is a
convenient way to avoid having to hardcode image names.

nf() can also zero-pad numbers, which is great for
keeping the frames in sorted order e.g. in a file browser.

To play the animation, loop over the animation array.
Can use the modulus operator to wrap the animation.

Processing has a global variable
frameCount that auto-increments every

time draw() is called.
6

Sprite Sheets

7

Hands-On: Sprites

1. Collect or create a sequence of images to use as a sprite.
2. Within setup(), load these images into an array. Use a loop

(potentially with nf()) instead of manually loading images
one-by-one.

3. Within the draw() function, display the images in sequence
at a given location

4. Use frameCount and the modulus operator to make the
sprite loop infinitely.

5. Experiment with frameRate() to change the speed of the
animation. Use one you think looks good.

8

Timers

9

We tied our sprite animation speed to the frame rate.
This isn't always a good idea. In fact, I'm going to go

ahead and say that it's a bad lazy idea, even though it's
convenient and everyone does it.

10

Timers
Instead of tying ourselves to the draw rate (i.e. do something every

draw), we can look at a clock, and only take action if it has been
enough time since the last time it happened.

Example for Sonic:

We want to advance the animation
every 0.2 seconds (200ms).
Advance the frame if it has been at
least 200ms since the frame was last
advanced.

11

int animationTimer = 0;
int animationTimerValue = 200;
int currentFrame = 0;
void draw() {
 image(x_sprite[currentFrame], 20, 250);
 // If it has been more than 200ms since the last "tick"
 if ((millis() - animationTimer) >= animationTimerValue) {
 currentFrame = (currentFrame + 1) % numFrames;
 // Set time of current tick
 animationTimer = millis();
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

We can use millis() to read how many milliseconds
have passed since the program started

12

Hands-On: Timers

1. Experiment with the code example for a timer-based sprite
2. Turn this into a Timer class, which has an interval for

activation and has a method which returns whether it's been
long enough since it was last activated.

3. Add a method to pause your timer.
4. Use the Timer class to animate your sprite. Pause/unpause

your timer when the user clicks, so that the user can pause
your animation by clicking.

13

If Time

Talk with your group about the final project.

14

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

15

