
Intro to Shaders

1

Last Time
Processors generally have challenges dealing

with two big issues:

Data Dependence
Branching

Loops
If-else
(Other stuff, as it turns out!)

CPUs solve this problem by
investing a lot of time and

performance into branch and
data management.

GPUs solve this problem by
being used for graphics

applications, which rarely have
to deal with these problems.

2

How do we program GPUs?

Programming Framework Used By
OpenGL/Vulkan Graphics Programmers

DirectX Windows Graphics Programmers

CUDA/HIP Machine Learning/Scientific
Programmers

Writing raw PTX/SPIR-V Crazy people

3

What's wrong with Vulkan?

Nothing. Vulkan is a really good API which opens the door
for all sorts of interesting control over the GPU. DOOM 2016

saw between 5% and 35% improvement in performance
when switching from OpenGL to Vulkan.

However, it's also incredibly complex, fiddly, and hard to get right,
even for a graphics framework. That's quite a high bar to meet.

Is there a processing unit that's good at both CPU and GPU tasks?

You could probably make one for $100k a pop.

4

https://www.eurogamer.net/digitalfoundry-2016-doom-vulkan-patch-shows-game-changing-performance-gains

If the GPU is only good at parallel, non-dependent
workloads, do I have to know which processor my code

is better for before I deploy it?

Yes. "You" (or your runtime) have to choose which processor your code runs
on, which means that you need to know what's better at what.

This is not a choice you have to make in Processing, since Processing splits
the workload appropriately for you. If you're not sure in other languages,

just choose the CPU.

Why not use P2D by default?

P2D has known issues having to do with image quality and missing features.

5

How will the project presentation be graded?

Based on the presentation you give. You'll need to hit all the
points in the presentation requirement (in particular, giving
enough of an overview of what you did that someone who

didn't do your project can understand what you did).

If you upload materials, you can present using my laptop. You can
also choose to bring your own laptop and present on that.

Tradeoff of risks: you can't test your code on my laptop (if you
want to do a live demo) but you should check your laptop on the

room's AV system if you want to use your own.

6

How does code get turned into zeros and ones?

The instructions we examined last class can actually be turned into
binary instructions, almost in a 1:1 fashion.

X1 = ADD X1 X2
X2 = SUB X2 X3
X3 = MUL X3 X4
X4 = DIV X4 X5

X5 = LOAD [myObj]
STORE X5 TO [myObj]

BRANCH (X4 == 0) 4
X7 = CALL square(X2)

1
2
3
4
5
6
7
8
9

10

These instructions can be encoded by
packing smaller numbers into a bigger

number, in a similar manner to how
colors work in Processing.

7

X1 = ADD X1 X2
X2 = SUB X2 X3
X3 = MUL X3 X4
X4 = DIV X4 X5

1
2
3
4

Operation Opcode
ADD with 2 variables 0

ADD with 1 variable, 1 constant 1

ADD with 2 constants 2

SUB with 2 variables 3

SUB with 1 variable, 1 constant 4

etc.... ...

Instruction Specification Tuple
ADD X1, X1 0, 1, 1, 0

ADD X1, 10 1, 1, 10, 0

SUB X3, X1 3, 3, 1, 0

ADD 0, 0 2, 0, 0, 0

SUB X3, 1 4, 3, 1, 0
8

Operation Opcode
LOAD 13

STORE 14

BRANCH with 2 registers, less than 15

BRANCH with 2 registers, equal to 16

BRANCH with 1 register and 1 constant, equal to 17

etc... ...

Instruction Specification Tuple
X1 = LOAD [25] 13, 1, 25, 0

STORE X32 to [117] 14, 32, 117, 0

BRANCH (X3 < X7), 217 15, 3, 1, 217

BRANCH (X24 == 17), 2023 17, 24, 17, 2023

9

We can now take these instruction encodings and turn them
into binary!

Instruction Specification Triple
X1 = LOAD [25] 13, 1, 25, 0

BRANCH (X3 < X7), 217 15, 3, 1, 217

0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Opcode Arg1

10

Arg2 Branch Target (unused)

0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1

Opcode Arg1 Arg2 Branch Target

We can now take these instruction encodings and turn them
into binary!

0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Opcode Arg1

11

Arg2 Branch Target

We used 32 bits for each instruction here, so
this would be a 32-bit processor.

Similar processes happen for GPU code.

OpenGL
An open graphics programming system supported by almost all major vendors.

Provides a programmable pipeline for graphics applications.

Requires support from multiple parties:

Hardware needs to support the draw commands used
Operating system needs to provide the appropriate libraries, software,
and interfaces to support OpenGL usage.
Application needs to provide the programs to run.

12

https://www.researchgate.net/figure/The-graphics-pipeline-in-OpenGL-consists-of-these-5-steps-in-the-new-generation-of-cards_fig1_235696712

Some of the GPU's functions are fixed in the hardware,
and there's nothing we can do to change them.

The Graphics Pipeline

13

Shaders

14

What are Shaders?

Shaders are programs that are run on the GPU.

Written in a special shading language. In our case, this will be the
OpenGL Shading Language (GLSL), but can also be others, e.g.

HLSL, RenderManSL, etc.

15

GLSL
A language which is most similar to C

(but pretty similar to Java).

Because it runs on the GPU, don't
have access to things like print, or

the ability to read files.

A few oddities like swizzling and
varying/uniform variables.

varying vec4 thing;
uniform mat4 matt;

void main(){
 vec3 v1 = vec3(1.0, 2.0, 3.0);
 vec4 v2;

 // These are not members!
 v2.xyz = v1.xxy;
 v2.w = v1.x;
}

1
2
3
4
5
6
7
8
9

10
11

16

Vertex
Shader

Fragment
Shader

17

Vertex Shader

Takes in vertices and applies an operation to every vertex.

Examples:

Transform each vertex to a new position
Compute lighting/color data for each vertex
Can displace vertices to make a bumpy/textured surface
(though in classic OpenGL, this is more commonly done in the
tessellation shader).

18

Vertex Shader
uniform mat4 transform;
attribute vec4 position;
void main() {
 //Must set gl_Position in vertex shader
 //for each vertex processed
 gl_Position = transform * position;
}

1
2
3
4
5
6
7

Shaders run main() for each input they get! Inputs are passed in
by shader-global variables.

For the vertex shader:

uniform variables are the same across all inputs.
attribute variables may change per-input, but are readonly.
varying variables may change per-input and are writeable.

19

20

Fragment Shader
Takes in fragments (pieces of shapes that the pipeline has rendered).

Also takes in any outputs the fragment shader may have created.

Outputs the color to use on the fragment.

void main() {
 // Color components are in [0.0, 1.0]
 // instead of [0, 255]
 gl_FragColor = vec4(1.0, 1.0, 1.0, 1.0);
}

1
2
3
4
5

21

Moving Data

22

In our example vertex shader, we took a transform and position
as input, and computed the transformed position of the vertex.

uniform mat4 transform;
attribute vec4 position;
void main() {
 //Must set gl_Position in vertex shader
 //for each vertex processed
 gl_Position = transform * position;
}

1
2
3
4
5
6
7

Question: Where does this data come from?Question: Where does this data come from?

Question: How does this data get there?

23

vertexPositions = [[1,2,3,1], [1,3,4,1], [1,4,7,1], ...]
transformMat = Mat4.identity()
When shader runs on vertex 1, vertexPositions[1]
is availble as the variable "positions"
glBindAttribute("position", vertexPositions)
transformMat will be availble to all shader invocations
under the variable name "transform"
glBindUniform("transform", transformMat)

1
2
3
4
5
6
7
8

uniform mat4 transform;
attribute vec4 position;
void main() {
 //Must set gl_Position in vertex shader
 //for each vertex processed
 gl_Position = transform * position;
}

1
2
3
4
5
6
7

Manually moving data between the CPU and GPU is error prone.
Let OpenGL handle it instead.

24

25

Moving Data Between Shaders

attribute vec3 position;
attribute float size;
varying vec3 vert_Output;
void main() {
 //Must set gl_Position in vertex shader
 //for each vertex processed
 gl_Position = vec4(position, 1.0);
 vert_Output = vec3(gl_Position.xyz)
}

1
2
3
4
5
6
7
8
9

Shaders run in a fixed order. In our system, vertex runs first,
then fragment.

To pass a variable between shaders, declare it in the first shader
and assign a value to it. It will be available in the second shader.

varying vec3 vert_Output;
void main() {
 // We have access to vert_Output
 // in the fragment shader!
}

1
2
3
4
5

26

Overall Setup Steps

1. Compile shader programs (e.g. vertex, fragment,
etc.)

2. Link shader programs together to make one big
shader

3. Tell the GPU to use our shader program
4. Specify data location on the CPU so that the GPU

knows how to find it
5. Set output data location
6. Draw stuff!

27

Shaders in Processing

28

Shaders in Processing are
Moderately Cursed

No way to control varying variables fed into the shader
Have to load vertex and fragment shaders together
Basically completely undocumented---only way to know
what happens is to read the Processing source code.
Shaders are basically un-debuggable.

For Processing, stick to modifying in-class
examples or existing shading code that works.

29

Processing API
PShader blur = loadShader("blur.glsl");

Just like most other load_ functions. First filename is always
a fragment shader, pass optional second filename to load a

vertex shader as well.

We can use the .set() method of PShader to set uniforms within
the shader.

30

Shaders are hard!

31

Visual scripting languages can make it much easier to program shaders. Example:
Substance allows us to program shaders for materials in a visual manner.

https://www.youtube.com/embed/y8q6-tgQjZc?enablejsapi=1

32

https://www.youtube.com/embed/y8q6-tgQjZc?enablejsapi=1

Engines like Unreal 4 also allow us to visually script
shaders, along with providing things like previews of the

material results

33

https://www.youtube.com/embed/TEmsqez2YQI?enablejsapi=1

34

https://www.youtube.com/embed/TEmsqez2YQI?enablejsapi=1

Demo: Shaders

35

Hands-On: Shaders
1. Download the hands-on skeleton from Canvas. This

contains enough skeleton code to do a very basic
rendering of the famous Utah teapot.

2. Modify the code so that the ambient light and
directional light work, by following the hints in the
shader files.

3. OPTIONAL: Try adding another directional light,
either with the same color or a different color.

36

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

37

