
1

Last Time
Attributes/Modes: Function calls that modify all subsequent draw calls.

Attributes
Change how results look.

fill()
stroke()

Modes
Change what arguments mean.

rectMode()
colorMode()
blendMode()

2

Last Time
Digital color uses an additive model, usually with 8 bits (0-255) each for RGB.

Can use attributes like fill, stroke, and background
to affect color of what's drawn.

color yellow = color(255.0, 255.0, 0.0);
fill(yellow);
rect(0, 0, 200, 200);

1
2
3

Multiple ways to use these functions: can
specify RGB or pass a color primitive

fill(255.0, 255.0, 0.0);
rect(0, 0, 200, 200);

1
2

3

Last Time
Remember, draw() is called in a loop!

void draw(){
 rect(10, 10, 20, 20);
 fill(blue);
 ellipse(100, 100, 200, 200);
}

1
2
3
4
5

Attributes and modes can bleed through the bottom of
the loop and start affecting things before them if you're

not careful!

4

Code Review

5

6

Questions!

7

Any tips/tricks for being able to predict where shapes
are going to wind up?

Only one I have is to use a setup() call which gives you a screen size that
has nice divisions. 600 x 600 seems like a good choice.

300 = half
200 = third
150 = quarter
100 = sixth

Do you have ideas?
8

How do places like YouTube manage the size of videos?

What does the next frame look like?
9

a b c d

10

Fundamental idea: the better you can
predict something, the less

information you need to describe it.

“ The dog falls in
front of the tree.

“ The scene suddenly cuts away
to several rows of rubber ducks,

of various colors, shapes and
designs. They appear to be laid
out on a long strip of concrete

which curves slightly as it moves
away from the camera. There are

chairs and tables in the
background....

11

Can you use hexadecimals for color?

int doubleInt(int x){
 return x * 2;
}

void acceptInt(int x){
 x += 1;
}

void acceptColor(color x){
 red(x);
}

1
2
3
4
5
6
7
8
9
10
11

void setup(){
 int x = 2;
 acceptInt(2);
 acceptInt(x);
 acceptInt(1+1);
 acceptInt(doubleInt(3));

 color c1 = #bf5700;
 color c2 = color(255.0, 220.0, 215.0);

 acceptColor(c1);
 acceptColor(c2);
 acceptColor(#00ff00);
 acceptColor(color(2.0, 1.0, 30.0));
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Literals, variables, and expressions are all valid
instances of a type. 12

Lightning Round
Q: How do you find the color/opacity you're

looking for?

A: Try 'em out and see. I wish there were a better response (though tools like
color pickers can make "trying it out" a lot faster). Experience helps with this.

Q: Can Processing save the image you have
when you click "Run"?

A: Not sure this is what you want, but check out the
function.

save()

13

https://processing.org/reference/save_.html

I couldn't set array values outside of setup(). Why?

Setting an array value is "doing something." This needs to be
done in either setup() or draw().

Why did we need to store colors in an array?

For that hands-on, there was no technical reason to do so. It was
more as preparation for what we're going to be doing today.

< Various questions about scope and globals >

Hang on to these and ask them again after today if it's still unclear.

14

Q: When might it be useful to use explicit RGB
instead of a color hex?

A: If you're generating colors programmatically instead of trying to select
colors. For example, if you want to go over all shades of red, it might be

better to start off with explicit RGB values.

Q: What is up with Crysis?

A: I enjoy poking fun at it. I find it very funny that CryTek released a
game that nobody could actually run and charged $50 for it.

15

Q: Are there any functions that are
called multiple times by default like

draw() is?

A: Not quite, but hang on to that thought ;)

16

Announcement
Project 1 is live!

You can start working on it after today's lecture, but will not have all
the components you need to complete it until after Friday's class.

Due July 18 (Tuesday).

No sharing code among yourselves, AI models
are okay as long as you submit logs.

17

Using Color in Processing

18

Most functions that take color in Processing will
have these three variants:

Take a single color or hex argument
Take a single numerical grayscale argument
Take three separate arguments (RGB)

and for each of these, there will usually be a variant that
takes an additional alpha (transparency) argument.

19

More About Colors

20

RGB Color
We have defined color as a triplet of numbers, representing the

red, green, and blue components of the color.

color yellow = color(255.0, 255.0, 0.0);1

What if I told you there was another way?

21

HSV/HSB

Hue-Saturation-Value (or Brightness) is
commonly used in color pickers

Hue: pure color
Saturation: amount of color
Value: darkness or lightness of color

22

How do we change the
interpretation of colors

between HSV/RGB?

colorMode(RGB, 255, 255, 255);
colorMode(HSB, 360, 100, 100);
colorMode(RGB, 1.0, 1.0, 1.0);
colorMode(HSB, 100);

1
2
3
4

23

Extracting Data from a color

float r = red(color c);
float g = green(color c);
float b = blue(color c);

1
2
3

float h = hue(color c);
float s = saturation(color c);
float v = brightness(color c);

1
2
3

24

colorMode(RGB, 255, 255, 255);
fill(50, 100, 100);
rect(0, 0, 50, 50); //Rect1
colorMode(HSB, 360, 100, 100);
fill(50, 100, 100);
rect(50, 50, 50, 50); //Rect2

1
2
3
4
5
6

25

Image Storage

26

Pixels

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1477223

Each pixel has some bits that
determine the color. Images are composed of pixels.

27

Image Buffer
Screen pixel data is stored in a buffer (array), which allows us to access

per-pixel information.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

How the pixels look on screen

0 1 2 3 4 5 6 7 8 9 ...

How the pixels are stored in
memory

28

Images in Processing
Images in processing are stored in the PImage type.
PImage allows us to load and display data.
We can also manipulate data:

Size
Position
Opacity
Tint

image(PImage img, float x, float y, float width,
float height) to display an image.
Use loadImage(string fname) to load an image.

29

void setup(){
 size(100, 100);
}

void draw(){
 PImage img;
 image(img, 0, 0);
}

1
2
3
4
5
6
7
8

void setup(){
 size(100, 100);
}

void draw(){
 PImage img = loadImage("foo.png");
 image(img, 0, 0);
}

1
2
3
4
5
6
7
8

void setup(){
 PImage img = loadImage("foo.png");
 size(100, 100);
}

void draw(){
 image(img, 0, 0);
}

1
2
3
4
5
6
7
8

PImage img;

void setup(){
 img = loadImage("foo.png");
 size(100, 100);
}

void draw(){
 image(img, 0, 0);
}

1
2
3
4
5
6
7
8
9

10

Displaying an Image

30

Adjusting Window to Image Size

void setup(){
 surface.setResizable(true);
 img = loadImage("foo.png");
 surface.setSize(img.width, img.height);
}

1
2
3
4
5

31

Modifying Pixels
In principle, we can modify pixel data just by modifying the pixels member of PImage.

PImage img;

void setup(){
 // Do setup + loading
}

void draw(){
 for (int i = 0; i < img.pixels.length; i++){
 color c = color(/* Some initialization */);
 img.pixels[i] = c;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

But this won't always work!
32

Modifying Pixels
Processing maintains two copies of the data in the image:

One is stored in the PImage variable
The other is used to actually display the image.

PImage Data Screen Data

loadPixels()

updatePixels()

33

PImage Data Screen Data

loadPixels()

updatePixels()

PImage img;

void setup(){
 // Do setup + loading
}

void draw(){
 img.loadPixels(); // Read updated pixel data into img
 for (int i = 0; i < img.pixels.length; i++){
 color c = color(/* Some initialization */);
 img.pixels[i] = c;
 }
 img.updatePixels(); // Write updated img data to screen
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Image manipulation might not work without these calls (depends on OS) 34

How can we access a pixel
by its (x,y) value?

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

How the pixels look on screen

0 1 2 3 4 5 6 7 8 9

How the pixels are stored in
memory

35

Perform a stride into the 1D array to find the row we're looking for.
Then use the column to find the final placement in the 1D array.
We need to know the image width to do this.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0

1

2

3

4

5

0 1 2 3 4 5

Where is (3,5)?
Where is (5,2)?
Where is (2,0)?

Where is (x,y)?
36

Traversing by (x,y)

img.loadPixels();
for(int x = 0; x < img.width; x++){
 for(int y = 0; y < img.height; y++){
 int index = x + y * img.width;
 color c = img.pixels[index];
 }
}

1
2
3
4
5
6
7

37

Tint
tint() modifies the color of a displayed image.
noTint() disables tint modifications.

size(400,400);
PImage img;
img = loadImage("yuya-onsen.jpg");
image(img, 0, 0);
tint(0, 153, 204); // Tint blue
image(img, width/2, 0);

1
2
3
4
5
6

38

The Data Directory
Processing needs one of two things to be true before it loads an image:

1. You need to give an absolute path to the file, i.e. a filepath that starts with
'/' on MacOS + Linux, or a drive letter on Windows.

2. The file needs to be in a data directory within the Processing sketch.

Processing Project Directory
your_program.pde
other_code.pde
data

your_image.jpeg
your_data.json

PImage img1;

void setup(){
 img1 = loadImage("your_image.jpeg");
}

1
2
3
4
5

39

Hands-On: Creating Tint
Recreate Processing's tint() function using a method you create

called myTint(). Do not use the existing tint() method.

1. The method should take RGB data. (OPTIONAL): make it so that you can
take either separate RGB arguments or a single color with the same
function.

2. myTint() should be "per image" rather than "per-screen" so you
should have an argument for the PImage you will tint.

3. You do not need to worry about undoing the tint.

If you don't have a suitable picture, check the #animals-are-cute channel on EdStem.

Take the directory which contains your .pde file and your data directory, and ZIP that
into an archive. Submit this archive to Canvas. 40

Local Transformations

41

How do you give a function default/optional
arguments?

def say_a_thing(thing="Hello!"):
 print(f"The computer says {thing}")

1
2

say_a_thing()1 say_a_thing("Moo.")1

42

void sayAThing(){
 println("The computer says Hello!");
}

void sayAThing(String thing){
 println("The computer says " + thing);
}

1
2
3
4
5
6
7

Must differ in number or type of arguments.

Overloads

sayAThing();1

sayAThing("Moo.");1

// Can use this instead of the first overload of
// sayAThing---but we cannot have both at once,
// since those would have the same number + type
// of arguments

void sayAThing(){
 sayAThing("Hello!");
}

1
2
3
4
5
6
7
8

43

Overloads can be used for more than default arguments!
String smushTogether(String a, String b){
 return a + b;
}

PImage smushTogether(PImage a, PImage b){
 PImage result = createImage(a.width, 2 * a.height, ARGB);
 int imageSize = a.pixels.length;
 for(int i = 0; i < imageSize; i++){
 result.pixels[i] = a.pixels[i];
 }
 for(int i = 0; i < imageSize; i++)}{
 result.pixels[i + imageSize] = b.pixels[i];
 }
 return result;
}

int smushTogether(int a, int b){
 String s_a = String.valueOf(a);
 String s_b = String.valueOf(b);
 String squished = smushTogether(s_a, s_b);
 return parseInt(squished);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

 You can look up "Java method overloading" if you want to learn more. 44

Why couldn't we tint our image by
laying a transparent rect over top?

void setup(){
 img = loadImage("oogabooga.png");
 myTint(img, 100, 200, 75);
}

void draw(){
 image(img, 50, 30);
}

1
2
3
4
5
6
7
8

myTint() has to draw the rectangle here, but how
do we know where to draw it?

What if we move the image while drawing it?

45

Is there a way to index into a color?
e.g. color[0] or color.red

No. Colors are actually stored in a giant integer, basically by using
the smushTogether function shown earlier!

s
m
u
s
h

Actual process takes place in binary instead of decimal, but idea is identical.

Since this is just an int, we don't have a way to index into it.

color(, , ,)

46

Code Review

47

The Values In Your
Neighborhood

They're the values that you meet when you're walking down the street...48

The manipulations we have seen so far are per-pixel. Output
pixel values only depend on the input pixel values.

Example: Grayscale image. How can we find a single value that
captures the information of three color channels?

49

Some manipulations are local: require information about neighboring pixels as well.

Example: Increase contrast between pixels.

50

Image Kernel
Can go by several names:

Kernel
Convolution Matrix
Mask

A small matrix which is used to make
adjustments to image data based on

local information.

Almost always small (3x3, 5x5) and square.

51

Convolution
1. Multiply corresponding cells
2. Sum the resulting values

NOT a matrix multiply!!

52

Reasoning About Kernels

53

1 1 1

1 1 1

1 1 1

What Does This Kernel Do?

9
1

Averages all pixels in the
neighborhood: blurs the

image slightly. This kernel is
known as the box blur.

54

-1 0 1

-2 0 2

-1 0 1

-1 0 1

-2 0 2

-1 0 1

-1 0 1

-2 0 2

-1 0 1

-1 0 1

-2 0 2

-1 0 1

55

-1 0 1

-2 0 2

-1 0 1

Blacks out the result unless there is a vertical edge in the image. This
is known as a Sobel filter or an edge-detection filter.

56

-1 -2 -1

0 0 0

1 2 1

-1 -2 -1

0 0 0

1 2 1

-1 -2 -1

0 0 0

1 2 1

-1 -2 -1

0 0 0

1 2 1

57

-1 -2 -1

0 0 0

1 2 1

Horizontal edge detector

58

-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

59

1 2 1

2 4 2

1 2 1
16
1

Known as a Gaussian blur

60

0 -1 0
-1 5 -1
0 -1 0

What does this kernel do?

61

0 -1 0
-1 5 -1
0 -1 0

If center pixel is brighter than
others, boost its brightness.

0 -1 0
-1 5 -1
0 -1 0

If center pixel is darker than
others, lower its brightness.

Effect: emphasizes pixels that are brighter than
their neighbors.

62

63

Applying Convolutions

64

Step 1: Apply kernel to single pixel

void applyKernelTo(PImage img, int x, int y){
 // ?
}

1
2
3

Need to access neighborhood of x, y to obtain image values, and same for kernel.
65

float[] kernel = {0, -1, 0, -1, 5, -1, 0, -1, 0};

void applyKernelTo(PImage img, int x, int y){
 for(int x_off = -1; x_off <= 1; x_off++){
 for(int y_off = -1; y_off <= 1; y_off++){

 }
 }
}

1
2
3
4
5
6
7
8
9

66

float[] kernel = {0, -1, 0, -1, 5, -1, 0, -1, 0};

void applyKernelTo(PImage img, int x, int y){
 for(int x_off = -1; x_off <= 1; x_off++){
 for(int y_off = -1; y_off <= 1; y_off++){
 int img_index = (y + y_off) * img.width + (x + x_off);
 int ker_index = (1 + y_off) * 3 + (1 + x_off);

 // ?
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

67

float[] kernel = {0, -1, 0, -1, 5, -1, 0, -1, 0};

void applyKernelTo(PImage img, int x, int y){
 // Declare and initialize final_red, final_green, final_blu
 for(int x_off = -1; x_off <= 1; x_off++){
 for(int y_off = -1; y_off <= 1; y_off++){
 int img_index = (y + y_off) * img.width + (x + x_off);
 int ker_index = (1 + y_off) * 3 + (1 + x_off);

 float red = img.pixels[img_index];
 final_red += red * kernel[ker_index];

 // Perform similar operations for green and blue;
 }
 }
 final_red = constrain(red, 0, 255); // Why?
 // Also clamp green and blue
 color final_color = color(final_red, final_green, final_blu
 img[x + img.width * y] = final_color;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

68

Why can't we store the new
value in the existing image?

69

Intermediate Buffer
Array of pixels which matches the size of the image
Provides a safe location for storing image data
Allows program to preserve original image data
Common trick to increase speed of rendering (double
buffering)

Arithmetic
happens here

Write back to
intermediate

buffer

70

Creating a Buffer
There are a few ways to create a duplicate image.

The simplest (when possible) is just to load the image twice:
PImage img = loadImage(image_file);
PImage buf = loadImage(image_file);

You can also create a blank image:
PImage buf = createImage(width, height, ARGB);

If necessary, copy pixel values between the images:
copy(img, x, y, width, height, x, y, width,
height);

71

Beginner's Trap
PImage img = loadImage(image_file);
PImage buf = img;

This does not create a full copy of the image! This is called a shallow copy of
the data. Use the techniques on the previous slide to get a deep copy.

img buf

Shallow Copy Deep Copy

data

img buf

data

img buf

data

72

data

So Far
Use function to compute the convolution at a
single pixel location.
Within function, use for-loops over offsets to
compute result of convolution.
Use 2D array math to compute indices into
image and kernel.
Read data from image and compute
convolution value.
Clamp final values into valid range.
Write final value to intermediate buffer (you
will need to change the code to accomplish
this!).
Call this function on every location in the
image.

float[] kernel = {0, -1, 0, -1, 5, -1, 0, -1, 0};

void applyKernelTo(PImage img, int x, int y){
 // Declare and initialize final_red, final_green, final_blue
 for(int x_off = -1; x_off <= 1; x_off++){
 for(int y_off = -1; y_off <= 1; y_off++){
 int img_index = (y + y_off) * img.width + (x + x_off);
 int ker_index = (1 + y_off) * 3 + (1 + x_off);

 float red = img.pixels[img_index];
 final_red += red * kernel[ker_index];

 // Perform similar operations for green and blue;
 }
 }
 final_red = constrain(red, 0, 255); // Why?
 // Also clamp green and blue
 color final_color = color(final_red, final_green, final_blue
 img[x + img.width * y] = final_color; // Broken
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

73

Literal Edge Cases

Strategies for dealing with this:

Don't apply convolution to edges or corners
Missing values are filled in with a default (0 or 255)
Wrap missing pixels from the other side of the image
Mirror missing pixels from the other side of the kernel

applyKernelTo(img, 0, 0)

74

Hands-On: Image Kernels

1. Take your "sharpen" kernel and store it in a variable.

2. Create a new image buffer to store the final, convolved
image data.

3. Apply the sharpen kernel to an image and store the
convolved data into your secondary image buffer.

4. Display the convolved buffer to the screen.

75

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

76

