
1

Last time on Dragonball Z...
Image kernels can be used to process local information on images.

Applied via a process called convolution.

2

Convolution
Individual outputs are computed by a stack-multiply-add operation.

3

Questions

4

Are projects always going to
be based on material before

the end of the week?

5

Do kernels have to be 3x3?
Nope.

Do kernels have to be square?
Nope.

6

What are common kernel functions?
For human-designed kernel functions, we've actually covered most of them!

But most convolutional kernels aren't human-made anymore!

7

Almost all modern image/video processing is done with
convolution as an operation.

8

Can we scale up images by
undoing a convolution? By

modifying pixels?

9

Input Devices
Devices which allow us to interact with computers.

Examples:

Mouse
Keyboard
Scanner
Microphone
Webcam
Touchscreen
Controller

10

The full picture is somewhat complicated...

11

Simplified Picture

Ke
yb

oa
rd

M
ou

se

G
am

ep
ad

CPU communicates with
external devices on a bus
(fancy name for a single big
wire that everyone shares)

Devices receive commands
from CPU

Devices can issue interrupts to
let the CPU know about
events

Software converts interrupt to
event

12

Events
Typically, when an event is triggered, the program will call a

function. In most general-purpose languages, it is up to us to
specify which functions are called on which events.

void handle_sigint(int signum) {
 printf("Received SIGINT signal. Exiting...\n");
 exit(0);
}

int main() {
 struct sigaction sa;
 sa.sa_handler = handle_sigint;

 sigaction(SIGINT, &sa, NULL) == -1;
 // Rest of the program
}

1
2
3
4
5
6
7
8
9

10
11
12

Fortunately, Processing handles most of this boilerplate for us!
13

Events in Processing

14

Events
When Processing receives an event, it sets several special

variables and tries to call an event handler.

If no event handler exists, then the handler is not called.

Examples of event handlers:

mousePressed()
mouseReleased()
mouseMoved()
mouseDragged()
keyPressed()
keyReleased()

15

Mouse Variables

mousePressed: stores whether mouse button is pressed or not
mouseButton: stores the most recently pressed button, one of
LEFT, CENTER, or RIGHT
mouseX,mouseY: The coordinates of the mouse cursor in the
current window
pmouseX, pmouseY: The coordinate of the mouse cursor in the
window on the previous frame (useful for determining the
direction of mouse motion, e.g. for dragging).

16

void setup(){
 size(800,800);
}

void mousePressed(){
 if (mouseButton == LEFT){
 textSize(128);
 text("LEFT", mouseX, mouseY);
 } else {
 textSize(168);
 text("RIGHT",mouseX, mouseY);
 }

}

void draw(){}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

17

Keyboard Variables

keyPressed: stores whether a key has is pressed or not
key: stores the most recently pressed key. Can take the value of
an ASCII character or one of BACKSPACE, TAB, ENTER, RETURN,
ESC, DELETE
keyCode: stores keypresses for non-ASCII characters. Useful
values include ALT, CONTROL, SHIFT, UP, DOWN, LEFT, RIGHT

18

int x = 0;
int y = 0;
void setup(){
 size(800,800);
}

void keyPressed(){
 if(keyCode == DOWN){ y += 5; }
 else if (keyCode == UP){ y -= 5; }
 else if (keyCode == LEFT){ x -= 5; }
 // Why not else?
 else if (keyCode == RIGHT){ x += 5; }
}

void draw(){
 fill(0);
 background(200); // Reset the screen
 ellipse(x, y, 30, 30);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

19

Draw Loop
A kind of system-generated event which is triggered every 16.66 ms (60 times

per second).
When event triggers, calls the draw() function.

public static void main(String[] args){
 // Create a timer which fires every 16ms
 Trigger draw_tr = create_timer(16);
 // Tell the program that when the event
 // occurs, it should respond by calling draw()
 register_event_handler(draw_tr, draw());
 setup();
 wait_for_exit();
}

1
2
3
4
5
6
7
8
9

But we as the programmer can control when this happens!
20

Draw Loop Modification

noLoop() stops the draw() command
loop() resumes the draw() command
redraw() executes the draw() command exactly
once

21

int x = 0;
int y = 0;
void setup(){
 size(200,200);
}

void keyPressed(){
 if(keyCode == DOWN){ y += 5; }
 else if (keyCode == UP){ y -= 5; }
 else if (keyCode == LEFT){ x -= 5; }
 // Why not else?
 else if (keyCode == RIGHT){ x += 5; }
}

void draw(){
 fill(0);
 background(200);
 // Prime-factorize 2000 random numbers
 expensive_operation();
 ellipse(x, y, 30, 30);
}

int x = 0;
int y = 0;
void setup(){
 size(200,200);
 noLoop();
 redraw();
}

void keyPressed(){
 if(keyCode == DOWN){ y += 5; }
 else if (keyCode == UP){ y -= 5; }
 else if (keyCode == LEFT){ x -= 5; }
 // Why not else?
 else if (keyCode == RIGHT){ x += 5; }
 redraw();
}

void draw(){
 fill(0);
 background(200); // Reset the screen
 expensive_operation();
 ellipse(x, y, 30, 30);
}

CPU Temp: 67 C CPU Temp: 39 C 22

Hands-On: Interactivity
1. Use the variables mousePressed and mouseButton in the draw()

loop to control the background color of the sketch.
2. Comment out the code in draw() and reimplement this in the
mousePressed() function.

3. Use mouseX and mouseY in the mouseMoved() function to draw a
circle that follows the mouse.

4. Display an object to the screen when the 'f' key is pressed using the
keyPressed() function.

5. Remove the object once the key is released using keyReleased()
but keep the background color changes and color.

This is the only hands-on for today. Once you're done, you may submit your index
card and leave, or stick around to work on the project until the end of class. 23

Project Time

24

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

25

