
Inheritance and
Composition

1

Last Time: OOP
Group related data and functions together
Don't worry about how something happens, just worry
about what happens.

One of the manifestations of these ideas is Object Oriented Program.
Create compound structures consisting of multiple members.

Data members referred to as fields.

Function members referred to as methods.

2

Classes and Objects
Classes form the blueprint for

data and functions.

Objects are concrete
realizations of a class.

Name: Car
Fields:

make
model
color
speed
fuel

methods:
accelerate(rate)
brake(rate)

Name: car_7
Fields:

make = "Honda"
model = "Civic"
color = PURPLE
speed = 0
fuel = 10.0

3

How to Create Classes + Objects
class Spot {
 float x, y, radius;

 void display() {
 ellipse(x, y, radius, radius);
 }

 Spot(){
 x = 50.0;
 y = 50.0;
 radius = 30.0;
 }

 Spot(float x, float y, float r) {
 this.x = x;
 this.y = y;
 this.radius = r;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Spot sp1, sp2;

void setup(){
 sp1 = new Spot();
 sp2 = new Spot(75, 80, 15);
}

void draw(){
 sp1.display();
 sp2.display();
}

1
2
3
4
5
6
7
8
9

10
11

4

Code Review

5

Questions

6

Is it possible for global variables to be visible to
a class without placing them in a class variable?

What order are files run in? Is the setup
function called after all global scripts are run?

Remember: there are broadly two
types of statements:

statements that make something
available to other code (variable
declarations, functions, classes)
statements that do something
(calls to background, variable
assignments, etc.)

All statements that "do something" need
to be in setup() or draw(). So the order

of statements doesn't matter, since the
only statements that do computation are

in setup and draw, and we know what
order those are going to be called in!

7

Order of Execution
Evaluate all the statements that don't
do anything (just make variables,
functions, and classes available)
Run setup()
Run draw() in a loop

So for a well-formed program,
order doesn't matter!

In practice, order seems to be main file first, then alphabetical by name, but there is no guarantee of this.
This is the left-to-right order in the Processing IDE.8

Will we mostly be implementing in
object-oriented styles moving forward?

For projects: absolutely.
For hands-on: mixed.

Do we need to implement
OOP in Project 1?

No. You can do so if
you want.

Is it only possible to do $THING using OOP?

Not at all! Object-oriented programming is just an organizational
technique. Everything you do using it can be done without it.

Is there a way to delete objects in Java so that
we don't have the cost of calling new?

No. In fact, because Java handles this for you, the cost of
eventually deleting the object is part of calling new.

9

Why can we use draw/setup as methods in our classes?

draw() and setup() are only special functions at
the top level of Processing (i.e. not in a class). If

you're putting them as methods in a class, you can
have as many as you want.

class CantStopMe {
 void setup() { }
 void draw() { }
}

class CodeRebellion {
 void setup() { }
 void draw() { }
}

class ItsAFreeCountry {
 void setup() { }
 void draw() { }
}

// Can only have one of these
void setup(){ }

// And one of these
void draw() { }

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

That being said, the Processing interface
tends to treat draw and setup as special

names, so if you're more comfortable
using other names, you can do that.

10

Is there a way to check object collisions other than checking
if the x and y values of the two objects are equal?

In fact, that's not enough! You need to check if the x and y
values are within certain ranges of each other, but you also

need to know about the shapes of each object!

11

When designing classes, is simpler better?

When programming in general, simpler is better.
The trick is being able to assess when some

complexity now will pay off later.

Do you know any really screwed up OOP designs?

...wait and see ;)

12

Relating Classes to Each Other

The ability to bundle related data and functions together is nice, but can
be obtained with other tools as well. In Python, we could use dicts, sets,

and modules to bundle code/variables together.

13

The true power of OOP lies in the ability
to specify relationships between classes

(and thus between objects).

14

Composition
Suppose we are trying to design a Bike class. What pieces

might we need for this class?

Frame
Wheels
Brakes
Drivetrain
Handlebars

In English, we would say that "a bike has a frame".
This is the has-a relation, or composition.

15

Animating a Bicycle

To animate:

Bike must move
Wheels must rotate

Additional rule: wheels on front and back

must be the same model.

16

class Bicycle{
 Frame frame;
 Wheel frontW;
 Wheel backW;
 float x, y;
 float wheelDist;

 Bicycle(Frame f, Wheel w){
 // Initialize bike
 }

 void displayBike(){
 // ?
 }

 void moveBike(float dx){
 // ?
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

17

void displayBike() {
 frame.drawAt(x, y);
 frontW.drawAt(x+wheelDist/2, y);
 backW.drawAt(x-wheelDist/2, y);
}

1
2
3
4
5

void moveBike(float dx) {
 this.x += dx;

 // Why can we compute one rotation for both?
 float wheelRotation = dx / (Math.PI * frontW.diameter);

 frontW.rotate(wheelRotation);
 backW.rotate(wheelRotation);
}

1
2
3
4
5
6
7
8
9

Note: we don't have to do 100% of the work ourselves!
Delegate work to components.

18

Why Use Composition?
Allow us to break complex problems into simpler ones.

Don't need to know how to draw the entire bike: just have

to know where to draw the wheels and let the wheels
draw themselves!

We can ignore how certain things are implemented.
How is Wheel::rotate() implemented? Don't know. Don't care!

19

Inheritance

Suppose we are trying to model multiple forms
of transport vehicles. What classes do we have?

Bike
Car
Truck
Scooter
Skateboard

Has-a isn't really appropriate to describe
the relationship between these!

20

Hierarchical Description
Vehicle

Motorized Vehicle Human-Powered
Vehicle

Scooter Car Bus Bicycle Skateboard

What might we call these arrows? 21

A class can inherit from another class.
The class that inherits is known as a subclass, derived class, or
child class.
The class that is inherited from is know as a superclass, base
class, or parent class.

A subclass extends a superclass. It contains all the fields and
methods of the superclass, but can also be extended with more.

An example of an is-a relationship.

A car does not contain a motorized vehicle, it is a
motorized vehicle. It can do everything a motorized

vehicle can and more.

22

Motorized Vehicle

Car Bus

class MotorizedVehicle {
 float fuel, speed;
 void addFuel(float amount){ /* */ }
 void accelerate(float rate){ /* */ }
}

class Car extends MotorizedVehicle {
 color color;
}

class Bus extends MotorizedVehicle {
 int numSeats;
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Car myCar = new Car();
myCar.color = color(10, 20, 30);
myCar.addFuel(10.0);
myCar.accelerate(20.0);

1
2
3
4

Use extends keyword to declare that a class is
a subclass of another.
Subclass declares members that are not in the
superclass
Still has access to superclass members!

Hmmmm.....
23

Constructors in Inheritance

class MotorizedVehicle {
 float fuel, speed;
 void addFuel(float amount){ /* */ }
 void accelerate(float rate){ /* */ }

 MotorizedVehicle(float fuel){
 if (fuel < 0){
 // ERROR: Fuel cannot be negative!
 this.fuel = 0.0;
 } else {
 this.fuel = fuel;
 }
 this.speed = 0.0;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

When writing a constructor, construct the parent class by calling
super().

class Car extends MotorizedVehicle {
 color color;

 Car(color c, float fuel){
 super(fuel);
 this.color = c;
 }
}

1
2
3
4
5
6
7
8

24

Subclass Relations +
Overriding

25

class MotorizedVehicle {
 float fuel, speed;
 void addFuel(float amount){ /* */ }
 void accelerate(float rate){ /* */ }
}

class Car extends MotorizedVehicle {
 color color;
}

class Bus extends MotorizedVehicle {
 int numSeats;
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Suppose we have a MotorVehicle object. What can we do with it?

void doAThing(MotorVehicle v){
 // What can we do to v?
}

1
2
3

What if v is a Car or a Bus?

26

Since a Car is a MotorizedVehicle, anywhere that we
expect a MotorizedVehicle, we can use a Car instead!

void doAThing(MotorVehicle v){
 // Check fuel
 if (fuel == 0){
 v.addFuel(10);
 }
 v.accelerate(5);
}

1
2
3
4
5
6
7

MotorVehicle v1 = new MotorVehicle();
Car c1 = new Car();
Bus b1 = new Bus();

doAThing(v1);
doAThing(c1);
doAThing(b1);

MotorVehicle v1 = new Car(); // Tricky

1
2
3
4
5
6
7
8
9

Note that the opposite is not true!
void doThing2(Car c){ /* ... */ }

MotorVehicle v1 = new MotorVehicle();
doThing2(v1); // ERROR

1
2
3
4

27

What if we implement a method in the derived class
that has the same name/types as one in the base?

class Foo {
 ...
 void printHello() {
 print("Hi I'm Foo");
 }
}

1
2
3
4
5
6

class Bar extends Foo {
 ...
 void printHello() {
 print("Hi I'm Bar");
 }
}

1
2
3
4
5
6

Foo f = new Foo();
Bar b = new Bar();
f.printHello();
b.printHello();

1
2
3
4

The method in the child class overrides the one in the parent!
28

Example of Overrides

class MotorizedVehicle {
 float fuel, speed;
 void addFuel(float amount){
 fuel += amount;
 }
 void accelerate(float rate){
 this.speed += rate;
 this.fuel -= 0.01 * rate;
 }
}

1
2
3
4
5
6
7
8
9

10

Motor Vehicles consume fuel to accelerate.

class Bus extends MotorizedVehicle {
 int seats;
 void accelerate(float rate){
 this.speed += rate;
 this.fuel -= seats * 0.01 * rate;
 }
}

1
2
3
4
5
6
7

Buses need to consume more fuel the
more seats they have.

29

void goGoGo(MotorVehicle v){
 v.accelerate(100);
}

1
2
3

Do we know what class v
actually is?

Do we need to worry about acceleration being incorrect (i.e. we
need to do something to v to make it "work"?)

30

Don't Mix The Relations!
Warning

31

People sometimes get confused about the difference between is-a and
has-a and model their problem with OOP incorrectly. This leads to what

has sometimes been called "certifiably insane" designs.

 from people who really should
have known better:

Real life examples

“ Car inherits from ParkingGarage
because parking garages contain

cars

“ Person should multiple-inherit*
from Head, Body, Arm, and Leg

* Multiple Inheritance is a feature that does not exist in Java or Processing

“ CarWithBumperSticker is a
subclass of Car

“ A circle inherits from a point
because I need to show off

inheritance for this textbook

32

https://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions

Example: ColorSpot

You may want to pull out your laptops and
follow along, since some of this will be on

the hands-on.

33

Hands-On: ColorSpot Class

1. Get the Spot subclass ColorSpot working in your code.
2. Create another Spot subclass called TwoSpots. (Dropdown > New

Tab). TwoSpots displays two ellipses around a center point.
3. Write code that lets you move a TwoSpots object to a specific

location. Do this without modifying the TwoSpots class directly.

34

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

35

