
Why are triangles faster to compute
than other shapes?

Triangles are guaranteed to be completely planar.

Wouldn't using triangles/polygons give the end result
a blocky/flat look instead of a smooth one?

1

How do you skin a rig?

The process for this is surprisingly complex!

The general idea is this:

Take the bones and a mesh in a default pose
(e.g. the infamous T-pose).
Give each point on the skin an association to
the bones near them.

Example: This point on the skin is distance
8 from bone A and distance 2 from bone B.
The point position will be 80% controlled by
bone B and 20% by bone A.

When the bones move, recalculate the skin
positions using the weights.

2

How does a scene hierarchy save time or space?

It doesn't.

It makes it easier to think about what's going on in a scene.

How do we decide which objects go together in a
scene hierarchy? Can they change on-the-fly?

Scene hierarchies are designed, not prescribed.

You can choose how you want to group shapes. You can
move shapes between groups. Then, use it and see

whether it works or not!
3

Can we program gravity/physics in Processing?

Absolutely! In fact, we'll see how to do this starting next week.

How do you figure out where the triangles go?

Similar to how you figure out where the shapes go in
2D. You do some programming, which is backed by

some math, and then you see if the results look right.

To generate the shapes in the first place, you usually use 3D
modeling software like Maya or Blender.

4

Code Review

...oh. Right.

5

Why is collision detection hard??

6

Problem 1: Discrete Timesteps

t=1t=2t=3t=4

7

Problem 1: Discrete Timesteps

t=1
t=2t=3t=4

8

Problem 1: Discrete Timesteps

t=1
t=2t=3t=4

9

Problem 1: Discrete Timesteps

t=1
t=2t=3t=4

Wuh woh. Maybe we can make the
timestep smaller?

10

To check if two triangles collide, need to check all six points.
11

The Stanford Dragon has 871,414
triangles.

How many checks do we need to see if two
Stanford dragons collide with each other?

6 × 871414 × 871414 = 4 556 174 156 376

Problem 2: Combinatorial Explosion

At 3 GHz, this is about 25 minutes.
12

Problem 3: Floating Point
double x;

void setup(){
 size(1000, 600);
 textSize(80);
 x = 1.0 / 3.0;
}

void draw(){
 x *= 4.0;
 x -= 1.0;
 println(x);
 if (frameCount % 20 == 0){
 background(70);
 text(String.valueOf(x), 50, 300);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

13

Are these colliding?

Better get it right or your car is going to go
straight through a wall without touching it!

14

What gets used in practice?
Use partitioning data structures like Bounding Volume Hierarchies
or k-d trees (similar to scene hierarchies) to prune unnecessary
collision checks.

Use fast-but-inaccurate tests to see if two objects might be colliding
(test can either output "no collision" or "possible collision")

If possible collision detected, do a slower, more thorough check.

Use a plethora of mathematical theory and engineering tricks to
(mostly) avoid floating point issues.

15

Transformations

16

Shapes and Hierarchies

Shapes form complex structures via hierarchies. These
make it easier to manipulate structures.

How do we actually do the manipulations?

Example: We should be able to just rotate stick
person's arm at the shoulder, and ball will move

(instead of having to move everything individually).

17

Transformations

One of the foundations of
rendering in computer graphics
Allow us to manipulate objects
within a scene

18

Mathematical
Representations

19

The field of linear algebra has deep connections
to transformations in both 2D and 3D

Students spend their whole first month struggling with the
linear algebra in spite of this.

In graphics for CS majors, we have a prerequisite of linear
algebra for the course.

20

Representations

A point is a vector:p p = [x
y

]

A transformation is a matrix:M M = [a
c

b

d
]

We perform matrix multiplication to apply
the transformation: p =′ Mp =[x′

y′
] [a

c

b

d
] [x

y
]

21

Matrix Multiplication

=[x′
y′

] [a
c

b

d
] [x

y
]

=[x′
y′

] [a
c

b

d
] [x

y
]

x =′ ax+ by

y =′ cx+ dy

I = [1
0
0
1
]

What if we multiply by the so-
called identity matrix?

22

Scaling

(1,1)

(2,2) M =1 [2
0
0
2
]

M =2 [0.5
0

0
2
]

(2,2)

(4,4)

23

Reflection

24

Shear

[1
0

b

1
] x =′ x+ by

y =′ y

25

Rotation

θ

→[1
0
] [cos(θ)

sin(θ)
]

→[0
1
] [−sin(θ)

cos(θ)
]

M =r R(θ) = [cos(θ)
sin(θ)

− sin(θ)
cos(θ)

]

26

Linear Transformations

All of these transformations are considered linear transformations:

Scaling
Reflection
Shearing
Rotation

What very important operation is missing?

27

Translation
We want to be able to move objects through space.

But we can't do this using our standard linear algebra...

=[x′
y′

] [a
c

b

d
] [0
0
]

28

Homogeneous Coordinates

=⎣⎢
⎡x′
y′

1⎦⎥
⎤

⎣⎢
⎡a
c

0

b

d

0

tx
ty
1⎦⎥
⎤
⎣⎢
⎡x
y

1⎦⎥
⎤

p =′ Mp

29

Combining Transformations

30

If we have a single, complex matrix, we can simply apply it to our object to
get the resulting transform.

But we can (and often should!) think about it as a sequence of simpler
transformations:

31

Order Matters!

Mathematical reason: matrix multiplication is generally not commutative.

Intuitive: what happens if we translate then reflect vs reflect then translate?

32

No Transformations
Applied

Translate Only Rotate Only

translate()
rotate()
draw()

rotate()
translate()

draw()
33

Transformations in Processing

translate(x, y): applies a translation which
moves points by (x,y)
rotate(θ): rotates by θ radians
scale(p): Scales by p, where 1.0 is no change.

34

Transformations in Processing
Transformations are a little like modes, where the

transformation function affects all future draw calls.

Two major differences:

Transforms stack instead of replacing the previous transform.
The transform is reset at the top of the draw() loop.

void draw(){
 translate(100, 100);
 ellipse(0, 0, 100, 100);
 translate(200, 200);
 ellipse(0, 0, 60, 60);
 translate(300, 300);
 ellipse(0, 0, 35, 35);
}

1
2
3
4
5
6
7
8

35

Undoing Transformations
Ctrl+Z 101

36

Cancelling out a Transform

 rotate(radians(45));
 translate(200, 0);

 // Undo our transformation
 rotate(radians(-45));
 translate(-200, 0);

 shape(ref);

1
2
3
4
5
6
7
8

Wuh woh.

37

Shoes-Socks Theorem

38

Cancelling out a Transform, but
properly

 rotate(radians(45)); // shoes
 translate(200, 0); // socks

 translate(-200, 0); // isocks
 rotate(radians(-45)); // ishoes

 shape(ref);

1
2
3
4
5
6
7

39

Bookmarking Transformations
Processing gives us tools to save and restore transformations.

pushMatrix() takes the current global transformation and records
it in a matrix stack. You can think of this as a global variable that is
hidden from you and can only be accessed with the functions here.

popMatrix() pops a transformation matrix off of the stack and
makes it the current transformation matrix.

These functions let us manipulate objects at different levels in the
scene hierarchy.

40

void draw(){
 pushMatrix();
 translate(100, 100);
 ellipse(0, 0, 100, 100);
 popMatrix();

 pushMatrix();
 translate(200, 200);
 ellipse(0, 0, 60, 60);
 popMatrix();

 pushMatrix();
 translate(300, 300);
 ellipse(0, 0, 35, 35);
 popMatrix();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

41

Why Transformations?

We can already emulate scale by passing parameters to
rect(). Why not just add a rotation parameter?

rect(0, 0, 100, 20, PI/8) ?
42

Composing transformations lets us describe very
complex motion with simple code.

By author Zorgit on Wikimedia, CC-BY-SA 3.0: https://commons.wikimedia.org/wiki/File:Cycloid_f.gif
43

Composing transformations lets us describe very
complex motion with simple code.

void draw(){
 translate(300, 300);

 rotate(frameCount * 0.03);
 translate(50, 0);

 translate(30, 0);
 rotate(frameCount * 0.05);

 translate(10, 0);
 rotate(frameCount * 0.1);

 rect(0, 0, 100, 100);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

44

In 3D, the "rotate" parameter gets complex
We need at least four* parameters to describe a rotation in three dimensions.

* terms and conditions apply

We need more spatial arguments as well!

box(x, y, z, width, height, depth, rot1, rot2, rot3, rot4);

In 3D, transformations are heavily used to avoid parameter explosions:

Boxes are always created at the origin
Spheres are always created at the origin
There are no ellipsoids (you have to scale a sphere)

45

Hands-On: Using Transformations
1. Translate the screen so that the origin (0,0) is at the center of the screen. Draw a solid

black circle at (0,0) to demonstrate this.
2. Draw a shape of your choice. Before drawing it, translate, then rotate, then scale the

shape (pick your own parameters for the transforms).
3. Draw the same shape as you did in step 2, with the same parameters for the

transforms. However, this time, apply the scale first, then rotate, then translate.
4. Draw an object of your own choice and apply your own set of transformations to it.
5. OPTIONAL: Animate a rectangle orbiting your black circle using only transformations.

See if you can keep the rectangle axis-aligned while it orbits!

The transformation in step 1 should apply to all of the other steps.
For Steps 2-5, you may want to pushMatrix() and popMatrix() so

that your transformations don't get too confusing. 46

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

47

