
SOFTWARE LIABILITY
DR. SARAH ABRAHAM
CS349

WHAT CAN GO WRONG IN SOFTWARE?

▸ Bugs

▸ Improper specification

▸ Improper implementation

▸ Race conditions

▸ Holes in security

▸ Etc etc…

THERAC-25

▸ Radiation therapy
machine

▸ Designed to target
cancerous cells with X-
rays or electron beam

▸ Killed 6 patients in 1986
and 1987

WHAT WENT WRONG?

▸ Previous versions of the machine had hardware interlocks to
prevent operating in an invalid mode

▸ Hardware locks and much of the manual controls removed in favor
of software control

▸ Software controls had a race condition

▸ If X-ray mode was selected, machine would begin set up (a
process taking 8 seconds)

▸ If switched to Electron mode during this time, the turntable
(which directs the radiation) would enter an unknown state

THERAC-25 SOFTWARE

▸ Entire design and code base was flawed

▸ No timing analysis of a real-time system

▸ No unit tests

▸ No fault tree analysis

▸ Written by one software engineer and no independent review

▸ Never tested as software-hardware combination before
reaching hospital

BUT EVEN AFTER THE SOFTWARE WAS PATCHED…

▸ Another patient died due to a counter overflow that
resulted in the mirror not moving correctly

PRIUS BRAKING SYSTEM

▸ 2010 Prius models and
Lexus hybrids recalled

▸ Issue with software of
regenerative braking
system

▸ Brakes temporarily stopped
working when going over a
bump

▸ Fixed with software patch

PRIUS ACCELERATION SYSTEM

▸ In 2009-2011 three Prius recalls because of claims that vehicle
would uncontrollably accelerate

▸ Likely it was mechanical rather than electronic

▸ Sticky accelerator pedals and floor mats that caught
accelerator pedals

▸ In 2013 Toyota still found liable because Toyota did not follow
best practices for a real-time operating system

▸ No protection from cosmic ray bit flips

▸ Run-time stack not large enough so possibility of data
overwrite

INTEL PENTIUM FLOATING POINT DIVIDE

▸ Pentium floating point error discovered in 1994

▸ Missing entries in table for SRT division in FPU control
logic leads to incorrect look up

▸ Only two paths to reach bug

▸ Intel received backlash from mainstream news sources
despite claiming effects were small and unlikely

HOW BAD WAS THIS BUG?

▸ Hard to say since it was caught quite quickly

▸ Discovered by a mathematician working with distribution of
primes

▸ In 1996 Ariane 5 rocket exploded 37 seconds after liftoff
due to conversion of 64-bit floating point to a 16-bit integer

▸ Overflow wasn’t handled so computer cleared memory

▸ Memory dump interpreted as an instruction to rocket
nozzles

KNIGHT CAPITAL GROUP

▸ In 2012 trading company lost $440M in 30 minutes

▸ Revenue from previous quarter was $288M

▸ Trading glitch sold overvalued shares back to market at a
lower price

▸ Affected 148 companies in the New York Stock Exchange

WHAT WENT WRONG?

▸ Technician did not copy new trading code (RLP) to one of
eight servers that routed equity orders

▸ RLP code repurposed flag formerly used to activate an old
function “Power Peg”

▸ Power Peg function for testing trading algorithms by
moving stock prices higher and lower

▸ Orders sent to eighth server with repurposed flag
triggered Power Peg

WHO IS RESPONSIBLE FOR:

▸ Therac-25?

▸ Prius acceleration/braking systems?

▸ Pentium FDIV?

▸ Knight trading glitch?

▸ What should happen to the responsible parties?

CASE STUDY

▸ You have just been hired onto a drone delivery startup
company. You thought you were being hired for backend
web development, but it becomes clear the company is
short-handed, so you are expected to help out the
embedded systems team. Although you have very little
experience in this area, you are eager to learn more.
Between the pressing deadlines and constantly shifting
milestones, you have very little mentorship or oversight.
What do you do?

ENGINEERING VERSUS SOFTWARE DEVELOPMENT

▸ Engineers are often regulated at the state or national level

▸ Must have a license to practice

▸ License can be revoked or suspended if engineer violates safety or
ethical practices

▸ Engineers can also be sued as an individual (usually in conjunction with a
law suit against the firm or company) for work done for the firm/company

▸ Software developers do no need to be licensed and are usually not held
individually responsible for negligence

▸ May result in company blacklisting though

WHAT GOES WRONG IN SOFTWARE DEVELOPMENT?

▸ Consider the 2014 Heartbleed vulnerability
on OpenSSL

▸ Computers verify a valid connection by
requesting data (and size of data) be sent
back from connected machine

▸ memcpy(bp, pl, payload);

▸ Programming mistake did not verify that pl is
of size payload

▸ Not an algorithmic issue

▸ Code is open source so anyone could
have reviewed it

COMPLEXITY

▸ Large scale systems are hard to reason about algorithmically

▸ States in a software program far exceed states in mechanical (or even
electrical) systems

▸ Algorithms may be correct based on untrue (or unenforced) assumptions

▸ Large scale systems are hard to reason about programmatically

▸ Many different programmers working on different parts of the system

▸ The correctness of the small pieces does not ensure the correctness of
the larger pieces

▸ Legacy code remains long after original programmers leave

WHAT GOES WRONG IN SOFTWARE DEVELOPMENT?

▸ Consider the Equifax breach in 2017

▸ Database of credit reporting agency breached by malicious hackers
resulting in the personal data of over 140M people being
compromised

▸ Point of failure was a vulnerability in the Apache Struts implementation

▸ Vulnerability disclosed by Apache in March, breach happened in May

▸ Breach continued through July

▸ Equifax set up a free credit monitoring system that was also vulnerable
to attacks

HUMAN FACTORS

▸ Poor design and coding practices

▸ Much software developed in unreasonable time frames that neglects proper
consideration of design or time for testing

▸ Demand for high volumes of software and code leads to under-qualified
programmers working on sensitive systems

▸ Emphasis is on budget and internal operations rather than user experience

▸ Complex operations and interests

▸ 3rd party developers and tools can introduce issues with design specification and/
or implementation

▸ Chain of management may distance high-level view of company from workers
focusing on daily tasks

INSTAPOLL QUESTION

▸ Have you worked on a large scale software system at a
company or lab? If so, have you experienced any issues
due to software complexity/human factors? If not, how
have your class experiences given you insight into
challenges of software development?

HOW DO WE COMBAT BUGS?

FORMAL VERIFICATION

▸ Formal verification can prove correctness of algorithms in
certain circumstances

▸ Model checking explores all states and transitions in the
model

▸ Theorem provers and satisfiability solvers can determine
system guarantees based on its specifications

▸ Dependently-typed programming (such as Agda) uses highly
specific and expressive types to ensure code that can compile
must run according to its specification

SOFTWARE SIMULATION

▸ Formal verification doesn’t necessarily scale to large
systems and can be slow to test

▸ Representing a large-scale system as a verifiable model
may be difficult or impossible

▸ System simulation allows for testing on models that may
be harder to verify mathematically

▸ Helps creators reason about system’s model before and
during the creation of that system

UNDERSTANDING RACE CONDITIONS

▸ Occur when order-dependent events happen in an
unexpected order

▸ Nondeterminism makes them difficult to reproduce

▸ Changes to program (such as debug mode) can introduce
or eliminate unexpected program output

▸ Does not mean race condition is fixed!

TESTING AND EXPERIMENTATION

▸ Unit tests help reason about functionality and expected
behavior

▸ Dynamic analysis can check unusual paths and states

▸ Quality assurance (QA) allows additional eyes to assess
weaknesses in software

▸ But there will still be bugs!

ETHICAL DATA MANAGEMENT

▸ Privacy and security cannot be sidelined for the sake of
rapid development and prototyping

▸ Welfare of consumers and the general public must be
taken into consideration

▸ Even software for “non-critical” systems can impact public

▸ e.g. Facebook, Uber, Sony, etc

SOFTWARE ENGINEERING CODE OF ETHICS
1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of
their profession and shall promote an ethical approach to the practice of the profession.

IS THIS PROBLEM GETTING WORSE OR BETTER?

REFERENCES

▸ <https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/>

▸ <https://www.computingcases.org/case_materials/therac/therac_case_intro.html>

▸ <https://www.npr.org/templates/story/story.php?storyId=123537419>

▸ <https://www.eetimes.com/document.asp?doc_id=1319897>

▸ <https://web.archive.org/web/20081210133154/https://www.maa.org/mathland/
mathland_5_12.html>

▸ <https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-
cost-it-440-million/>

▸ <https://www.nspe.org/resources/professional-liability/liability-employed-
engineers>

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/
https://www.computingcases.org/case_materials/therac/therac_case_intro.html
https://www.npr.org/templates/story/story.php?storyId=123537419
https://www.eetimes.com/document.asp?doc_id=1319897
https://web.archive.org/web/20081210133154/https://www.maa.org/mathland/mathland_5_12.html
https://web.archive.org/web/20081210133154/https://www.maa.org/mathland/mathland_5_12.html
https://web.archive.org/web/20081210133154/https://www.maa.org/mathland/mathland_5_12.html
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://www.nspe.org/resources/professional-liability/liability-employed-engineers
https://www.nspe.org/resources/professional-liability/liability-employed-engineers
https://www.nspe.org/resources/professional-liability/liability-employed-engineers

REFERENCES

▸ <https://www.digitaltrends.com/computing/the-heartbleed-bug-
explained-by-a-web-comic-xkcd/>

▸ <https://gizmodo.com/how-heartbleed-works-the-code-behind-the-
internets-se-1561341209>

▸ <https://www.wired.com/story/equifax-breach-no-excuse/>

▸ <https://www.forbes.com/sites/forbestechcouncil/2018/09/20/move-
fast-and-dont-break-things/>

▸ <https://www.nytimes.com/2018/09/26/technology/uber-data-
breach.html>

▸ <https://www.computer.org/web/education/code-of-ethics>

https://www.digitaltrends.com/computing/the-heartbleed-bug-explained-by-a-web-comic-xkcd/
https://www.digitaltrends.com/computing/the-heartbleed-bug-explained-by-a-web-comic-xkcd/
https://www.digitaltrends.com/computing/the-heartbleed-bug-explained-by-a-web-comic-xkcd/
https://gizmodo.com/how-heartbleed-works-the-code-behind-the-internets-se-1561341209
https://gizmodo.com/how-heartbleed-works-the-code-behind-the-internets-se-1561341209
https://gizmodo.com/how-heartbleed-works-the-code-behind-the-internets-se-1561341209
https://www.wired.com/story/equifax-breach-no-excuse/
https://www.forbes.com/sites/forbestechcouncil/2018/09/20/move-fast-and-dont-break-things/
https://www.forbes.com/sites/forbestechcouncil/2018/09/20/move-fast-and-dont-break-things/
https://www.forbes.com/sites/forbestechcouncil/2018/09/20/move-fast-and-dont-break-things/
https://www.nytimes.com/2018/09/26/technology/uber-data-breach.html
https://www.nytimes.com/2018/09/26/technology/uber-data-breach.html
https://www.nytimes.com/2018/09/26/technology/uber-data-breach.html
https://www.computer.org/web/education/code-of-ethics

