
Hierarchical Modeling

Geometric Primitives

Remember that most graphics APIs have
only a few geometric primitives
• Spheres, cubes, triangles, etc

These primitives are instanced in order to
apply transforms

Instance Transforms

We start with a prototype object (symbol)

Each appearance of the object is an
instance

Instance defines transforms:
• Scale, rotate, translate, etc

Relationships between Instances
Objects often consist of sub-objects

Consider: A car chassis has four wheels
• 2 symbols
• 5 instances

Rotational wheel speed
determines forward motion

How to represent this?

Graphs

• Set of nodes and edges
• Edge connects a pair of nodes
• Direction reflects relationship

Any problems with this?

Graphs

Graph should be acyclic!

What might our car representation look like?

loop

Directed Acyclic Graph

Trees

(Same idea as the DAG)
What information is encoded in the nodes

and edges?

Modeling with Trees
Nodes contain:

• What to draw
• Drawing attributes
• Pointers to children

Edges can contain:
• Geometric transformations (or can be

stored in node)

Consider this Robot Arm

3 degrees of freedom:
• Base rotates about its vertical axis by θ
• Lower arm rotates in its xy-plane by φ
• Upper arm rotates in its xy-plane by ψ

h1
h2

h3

Relationships in Robot Arm
Base rotates independently

• Position depends on θ
Lower arm attached to base

• Position depends on θ
• Position depends on φ

Upper arm attached to lower arm
• Position depends on θ
• Position depends on φ
• Position depends on ψ

In-Class Activity

Draw a tree structure that represents this
robot arm

Define the matrices at each joint (edge)
that will position the robot parts correctly

Robot Tree Model Example

Robot Transform Matrices Example
• Rotation of base: Rb

• Apply M = Rb to base
• Translate lower arm relative to base: Tlu

• Rotate lower arm around joint: Rlu

• Apply M = Rb Tlu Rlu to lower arm
• Translate upper arm relative to lower arm: Tuu

• Rotate upper arm around joint: Ruu

• Apply M = Rb Tlu Rlu TuuRuu to upper arm

OpenGL Code
robot_arm(){
 glm::rotate(theta, 0.0, 1.0, 0.0);
 base();
 glm::translate(0.0, h1, 0.0);
 glm::rotate(phi, 0.0, 0.0, 1.0);
 lower_arm();
 glm::translate(0.0, h2, 0.0);
 glm::rotate(psi, 0.0, 0.0, 1.0);
 upper_arm();
}

Humanoid Example

Transformation Matrices

There are 10 relevant matrices:
• M positions and orients entire figure

through torso (root node)
• Mh positions head wrt torso
• Mlua, Mrua, Mlul, Mrul position arms and

legs wrt torso
• Mlla, Mrla, Mlll, Mrll position lower parts of

limbs wrt corresponding upper limbs

Display and Traversal

Display a tree via graph traversal:
• Visits each node once
• Applies correct transformation matrix

for position and orientation

Stack-based Traversal
• Set model-view matrix to M and draw torso
• Set model-view matrix to MMh and draw head
• For left-upper arm need MMlua and so on
• Rather than recomputing MMlua from scratch

or using an inverse matrix, we can use the
matrix stack to store M and other matrices as
we traverse the tree

Fixed Function Example
 glPushMatrix()
 torso();
 glRotate3f(…);
 head();
 glPopMatrix();
 glPushMatrix();
 glTranslate3f(…);
 glRotate3f(…);
 left_upper_arm();
 glPopMatrix();
 glPushMatrix();

glPushMatrix and glPopMatrix
Now deprecated functions handled matrix stacks

glPushMatrix() duplicates current matrix
and adds to stack

glPopMatrix() removes current matrix and
replaces it with one below

Note that there is no direct “replacement” in
Modern OpenGL — you must manage your
own matrix stacks!

OpenGL and Objects

OpenGL lacks object orientation
• Properties determined by OpenGL

state rather than object
characteristics

Imperative Model

Representation stored within application
Representation provides information (e.g vertex

list, edge list) for functions to calculate results

Application glRotate

cube data

results

Object-Oriented Model

Representation stored within object
Application passes message to object
Object has necessary information to

transform itself

Application Cube Object
message

C/C++

C allows structs for building objects

C++ provides more comprehensive support
• Support for public, private, protected

members
• Polymorphism
• Other OOP concepts

Cube Object Example

Creating functionality for scaling, orienting,
positioning and coloring a cube object:

cube mycube;
mycube.color[0]=1.0;
mycube.color[1]=
mycube.color[2]=0.0;

mycube.matrix[0][0]= …

Cube Object Functions
Use functions to apply changes within the class:
mycube.translate(1.0, 0.0,0.0);
mycube.rotate(theta, 1.0, 0.0,
0.0);
setcolor(mycube, 1.0, 0.0,
0.0);
mycube.render();

Cube Class Example
class cube {
 public:
 float color[3];
 float matrix[4][4];
 // public methods

 private:
 // implementation

}

Private Implementation

Implementation of object (e.g. vertex lists
etc) should generally be kept private

Using an object should not require
understanding the implementation

(Basic OOP concepts still apply!)

Other Objects

Objects can have geometric aspects:
• Cameras
• Light sources

Objects can also be non-geometric:
• Materials
• Colors
• Transformations

Application Code Example

cube mycube;
material plastic;
mycube.setMaterial(plastic);

camera frontView;
frontView.position(x ,y, z);

Light Object Example
class light { // match Phong model
 public:
 boolean type; //ortho or perspective
 boolean near;
 float position[3];
 float orientation[3];
 float specular[3];
 float diffuse[3];
 float ambient[3];
}

Scene Descriptions
Hierarchical modeling used to structure and

manipulate object’s underlying form

This idea can be applied to greater scene
and its elements (cameras, lights,
materials, geometry etc)

Render this scene via tree traversal

Scene Graphs

Objects in Graphics Engines

Goals:
• Provide access to functionality in an

intuitive way
• Hide low level details
• Encourage modularity and reuse

Example: Unreal Engine 4
AActor is base class for anything placed or

spawned in a level
• Handles collisions, network replication, and

graphics transforms
• Examples of its graphics functionality:

• GetActorLocation() -> FVector
• GetActorQuat() -> FQuat
• GetActorRotation() -> FRotator
• GetActorForwardVector() -> FVector
• ActorToWorld() -> FTransform

UE4: FVector
Basic storage of 3 (x, y, z) components
Provides various point/vector functionalities:

• Normalize()
• Orthogonal()
• DotProduct()
• Dist()
• ProjectOnTo()
• ToOrientationRotator()
• etc…

UE4: FRotator
Basic storage of pitch, yaw, and roll
Provides various rotation functionality:

• GetInverse()
• Normalize()
• IsNearlyZero()
• Quaternion()
• Serialize()
• Vector()
• etc…

UE4: FTransform
Composed of scale, translate and rotate

(quaterion)
Provides various transform functionalities:

• GetDeterminant()
• Inverse()
• Multiply()
• SetLocation/Rotation/Scale3D()
• ToHumanReadableString()
• etc…

