
Character Animation and Skinning

Motion over time

Animation

Lead animator draws sparse key frames

Secondary artists fill in (by hand) the
intermediate frames: in-betweening

Traditional Character Animation

Computer Character Animation

How to in-between automatically on a 2D
sprite?

Surround object with animation cage

Moving the cage moves interior points

Cage-Based Animation

Simplest Cage: Triangle

Use barycentric interpolation

Matches points’ pixels between triangles

Polygonal Cages

Must generalize barycentric coordinates to
arbitrary polygons

Many ways to do this:  
generalized barycentric  
coordinates not unique

Generalized Barycentric Coordinates

Polygonal Cages

Other properties:
1. Weights must be

positive inside the
polygon (or get leaks)

Polygonal Cages

Other properties:
1. Weights must be positive inside the

polygon (or get leaks)
2. Weights must unique (or get flips)

Polygonal Cages

Other properties:
1. Weights must be positive inside the

polygon (or get leaks)
2. Weights must unique (or get flips)
3. Smooth
4. Easy to compute

Some Possible Schemes

Wachspress Coordinates
Mean-value Coordinates
Green Coordinates
Bounded Biharmonic Weights
etc…

Cage-Based Animation

Extends to 3D from 2D naturally

Full control, but not intuitive

Handle-Based Animation

Pick special points (handles) on object

Moving handles moves nearby points

Character Rigs

Skeletons inside the geometry

the industry standard
for character animation

moving bones moves
surrounding geometry

how to build rig?

Building a Rig
Usually done by hand using Maya etc.

Expressiveness/complexity tradeoff

Rigging in Practice

https://www.youtube.com/watch?v=WxZz-
yH-mKU

https://www.youtube.com/watch?v=WxZz-yH-mKU
https://www.youtube.com/watch?v=WxZz-yH-mKU

Building a Rig

Some automatic tools exist…

[Pinocchio]
[Mixamo]

Mixamo Demo

https://www.mixamo.com/

Automatic rigging can work well for
humans/humanlike objects
• Assumes bipedal with standard

placement and orientation of joints

https://www.mixamo.com/

Not so impressive for arbitrary characters…

https://www.youtube.com/watch?v=fG_ErhAeROU
(apologist edition)

https://www.youtube.com/watch?v=fG_ErhAeROU

Data Needed for Rigging

• Mesh data exists in world
space in A-pose/T-pose

• Skeleton defines hierarchy
of bone angles and
lengths in A-pose

• Animation information
represents changes in
skeleton hierarchy

(Christoph Schoch)

Rigging Goal
Take vertex data in initial pose

world coordinates and convert
to animation pose world
coordinates
• Need to take world initial

pose, apply local animation
pose changes, then convert
back to final world position

How to do this?

Representing a Rig

Tree of bones connected by joints

bones have two endpoints
• first attached to parent

Bone Local Coordinates

Origin O
One natural direction: tangent axis

Bone Local Coordinates

Origin O
One natural direction: tangent axis
Two perpendicular directions:

Bone Local Coordinates

Origin O
One natural direction: tangent axis
Two perpendicular directions:

second endpoint:

Bone Local Coordinates

Child bone can be expressed in terms of
parent coordinate system

15

In local coordinates:

Bone to World Coordinates

In local coordinates:

In world coordinates:

Bone to World Coordinates

Forward Kinematics

changing also changes
child coordinate systems

Bones or Joints?

Which works better? A hierarchy of bones
or a hierarchy of joints? (i.e. what should
we store in our tree?)

Bones or Joints?
• They accomplish the same thing!
• A tree of joints may be easier to construct

initially but harder to reconstruct during
traversal

• Either approach is fine -- just make sure
you’re consistent and you’ve thought
through the math (I will focus on bone
representation)

• ...but don’t create hybrid trees with both
object representations...

What About the Base?

What About the Base?

write origin & axes in world coordinates, then

Additional Reading

https://www.gamedev.net/resources/_/
technical/graphics-programming-and-
theory/skinned-mesh-animation-using-
matrices-r3577

https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/skinned-mesh-animation-using-matrices-r3577
https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/skinned-mesh-animation-using-matrices-r3577
https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/skinned-mesh-animation-using-matrices-r3577
https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/skinned-mesh-animation-using-matrices-r3577
https://www.gamedev.net/resources/_/technical/graphics-programming-and-theory/skinned-mesh-animation-using-matrices-r3577

Skinning

Moving bones moves  
the character

Closer bones have  
more influence

Nearest-Bone Skinning

Given: undeformed (rest) skeleton and
deformed skeleton

Coordinate Systems

undeformed bone

world

deformed bone

Coordinate Systems

undeformed bone

world

deformed bone

Coordinate Systems

undeformed bone

world

deformed bone

Coordinate Systems

undeformed bone

world

deformed bone

Coordinate Systems

undeformed bone deformed bone

Key (and confusing) point:
• maps from undeformed local to

world coords (doesn’t move point)
• Identity maps undeformed to deformed

bone coords (and does move point)

Nearest-Bone Skinning

Undeformed to deformed skin position
(world coordinates):

Nearest-Bone Skinning

Undeformed to deformed skin position
(world coordinates):

changes during animation

What about World Space Transforms?

• Accomplishes the same thing
• Offset mapping not required

• Transformations to a parent bone must
be applied explicitly to all children

• Potentially inefficient
• Potential for massive performance hit

Modern Rig Example

Hero Rig in Last of Us:
• 326 joints
• 85 runtime driven
• 241 animation

sampled (baked)

https://youtu.be/myZcUvU8YWc

https://youtu.be/myZcUvU8YWc

Problems with Nearest-Bone

Which bone does point belong to?

Problems with Nearest-Bone

Which bone does point belong to?
One solution: average -1

Linear-Blend Skinning

Each vertex feels weighted
average of each bone’s
transformations

Nearby bones have higher

weight

Linear-Blend Skinning

How to determine skinning weights w?

Linear-Blend Skinning

How to determine skinning weights w?

• Use only nearest
bone

• Spatially blend the
weights

• In practice: paint
weights by hand

Painting Weights

https://www.youtube.com/watch?
v=cuaXDkbg4QA

https://www.youtube.com/watch?v=cuaXDkbg4QA
https://www.youtube.com/watch?v=cuaXDkbg4QA

The “Arm Twist” Problem

(Why does this happen?)

Blending Transformations

Each individual bone undergoes a rigid
transformation
• Combination rotation and translation

• Linear blend of rigid motions not rigid
• Can introduce shear and scale

Separate Transforms: Problem

Blended transformations not coordinate-
independent
• Different origin positions in bone

hierarchy result in different blends

Separate Transforms: Problem

where is the child bone half
way in between the motion?

(where it the origin?)

T1

T2

Separate Transforms: Problem

where is the child bone half
way in between the motion?

(where it the origin?)

Separate Transforms: Problem

where is the child bone half
way in between the motion?

(where it the origin?)

Separate Transforms: Problem

Blended transformations not coordinate-
independent
• Different origin positions in bone

hierarchy result in different blends
Must unify translation and rotation into
single state
• Blend centers of rotation

Dual Quaternion Skinning

Prevents loss of volume during rigid
motion

https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf

Take linear weighted average

Normalize it to surface

https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf

Dual Quaternions for Rigid Bodies
• Expresses a rotation (encoded in real)

and translation (encoded in dual)
• Dual unit is

·q = qr + qdε

where qr = r

qd =
1
2

tr

ε2 = 0

ε

Calculating the Dual Quaternion

• Rotation already encoded as a quaternion
• Maps directly to qr

• Encode translation (X, Y, Z) into quaternion
(t) then multiply by rotation to calculate qd

• Note t.w = 0

< w, v > < w′ , v′ > = < ww′ − v ⋅ v′ , wv′ + w′ v + v × v′ >
Quaternion multiplication reminder:

Blending Dual Quaternions

Apply weighted average to dual quaternion
then renormalize

·q =
∑n

i=1 wi
·qi

∥ ∑n
i=1 wi

·qi∥

Apply Dual Quaternions to Rigid Bodies

• Update vertex position and normals based on
blended dual quaternions

• Note: normals still need to be calculated in
world space (i.e. use inverse transpose to
handle non-uniform scales)

v′ = v + 2(qr × (qr × v + qr.wv)) + 2(qr.wqd − qd.wqr + qr × qd)

n′ = n + 2qr × (qr × n + qr.wn)

Blended vertex position:

Blended normal position:

Side note: The “Normal Matrix”
• Matrix provided in fixed function

pipeline
• No longer available in shader

pipeline
• Maintains correct direction of

normals to surfaces regardless
of non-uniform scales

• Full derivation here: http://
www.lighthouse3d.com/
tutorials/glsl-12-tutorial/the-
normal-matrix/

N

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/
http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

Dual Quaternion Skinning
• No more arm twisting issues
• Less deformation
• The industry standard (used in Maya, etc)

https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric.pdf

https://www.cs.utah.edu/~ladislav/kavan08geometric/kavan08geometric.pdf

Animation Recap
Most common pipeline:
• build a 3D model of the character
• rig the 3D model (build a skeleton

inside)
• skin the model (determine bone-skin

weights)
• animate the bones by specifying

keyframes; skin moves with them

Animation Recap

Most common pipeline:
• model, rig, skin, animate

Automatic approaches exist for each step
• not great, but getting better

