
Curves and Splines



Curves in Spaces

Consider some curve with parametric 
function 𝛾(t):

Why might this be a useful thing to know?



Using Parameterized Curves

• Good for:
• Interpolation in animation
• Vector-based art (including fonts)
• Smooth models for physics calculations

• Nice properties:
• Easy to construct and compute
• Relatively portable representation



Simpler Curves

Some formulas more well-known than 
others: 𝛾(t) = (cos(t), sin(t))

How can we generalize this?



Linear Interpolation

Straight line segment between two points

𝛾(1) = P1

𝛾(0) = P0

𝛾(t) = P0 + t(P1 - P0)
𝛾(t) = (1 - t)P0 + t(P1)



Using Arbitrary Parameterization

Generalizes to any parameter t…

𝛾(u1) = P1

𝛾(u0) = P0



points in parameter space 
(knots) 

(how fast it goes) 

Straight line segment between point list 
 
 
 
 

Piecewise Linear Interpolation 

points in space 
(where curves goes) 



In-Class Exercise

Rewrite this parameterization:

for parameterizing an arbitrary point 
between Pi and Pi+1 in a piecewise line 
segment:



Piecewise Linear Interpolation 

“Pyramid Notation” 



Piecewise Linear Interpolation

A good first approximation:
• Easy to calculate
• Intuitive to understand

Why is this not always sufficient?



Continuity

Smoothness level describes a function’s 
continuity after taking a derivative

C0: Segments connected at joint
C1: Segments share 1st derivative at joint
C2: Segments share 2nd derivative at joint
Cn: Segments share nth derivative at joint



Lagrange Interpolation

Given a set of unique data points, possible 
to construct a polynomial that 
interpolates between data points



Lagrange Polynomials

Construct polynomial of n-1 degrees from 
n data points:

expanded basis polynomial for 
x0 from points {x0, x1, x2, x3}:



Solving as System of Equations

For any point along the curve, there is 
some polynomial



Lagrange Interpolation

Each coordinate is a linear combination of 
a power of t



Lagrange Interpolation

How to solve?



Lagrange Interpolation

Consider point Pi



Lagrange Interpolation

There are n known points



Vandermonde Matrix

If we use k = n, we get a Vandermonde 
Matrix



Vandermonde Matrix

Inverse of Vandermonde matrix contains 
coefficients of Lagrange interpolation 
polynomials

Finds coefficients of C



Lagrange vs Vandermonde

Two different methods that solve for the 
same problem

Lagrange interpolation is easier to solve 
but more involved to use

Vandermonde matrices can be near 
singular making computation expensive



Lagrange Interpolation

If there are n points, the degree 
is n-1
• 2: linear interpolation
• 3: quadratic interpolation

Curves are Cn-2 smooth



Lagrange Interpolation Problems

• No oscillation control
• Prone to problems of 

over-fitting
• Only gets worse with 

more points
• Must be recalculated if 

point changes

How can we solve these issues?



Splines

Piecewise polynomial functions
• Allow greater control over specific 

areas of the curve
• Interpolation more stable than 

polynomial interpolation
• Guarantees on smoothness at knots



History of Splines

Ship-building tool
Thin strip of wood to 

model boat’s curves
Weights (ducks or 

knots) ensure smooth, 
reproducible curvature





Spline Keywords
Interpolatory
• Spline goes through all control points
Linear 
• Curve points linear in control points
Degree n
• Curve points depend on nth power of t
Uniform
• Knots evenly spaced



Bézier Curves

Spline building blocks
Polynomial
Control point at each 

end
Curve lies in convex 

hull of control points



de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon

P0 P1 P2 P3



de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
Clip corners

1-t t

P0 P1 P2 P3



de Casteljau’s Algorithm

Main idea: recursive linear interpolation
Start with four points – control polygon
Clip corners

P0 P1 P2 P3



de Casteljau’s Algorithm

Four control points  cubic Bézier curve

P0 P1 P2 P4



de Casteljau’s Algorithm

More control points  smoother curve                                              
                       (more pyramid levels)

P0 P1 P2 P4



(Wikipedia)



de Casteljau Evaluation

Numerically stable
Slow
Control points have 

global influence



B-Splines (“Basis Splines”)

Piecewise polynomial
• (cubic common)

Used in Illustrator,
   Inkscape, etc

Arbitrary number of control points
• only first and last interpolated



B-Spline Properties

Local support: Polynomials are non-zero 
in a finite domain (i - n to i) where n is 
polynomial’s degree

Increasing multiplicity of knot decreases 
number of non-zero basis functions 
• If k knots at point, at most n - k + 1 

non-zero basis functions at point



Pyramid algorithm
Generalization of de Casteljau
Efficient and numerically stable
Allows local influence of control points

Idea: determine curve by inserting a knot 
n times (n is degree of polynomial)

de Boor’s Algorithm



Computing de Boor’s

If knot has multiplicity of n, there is only 
one non-zero basis function at knot
• i.e. the point on the curve is at the 

control point
If knot is inserted n times, final control 

point calculated from pyramid is point on 
curve



Identify point in space for knot position t
• Predetermine spline’s degree
• Recursively determine control points 

(P) from local knots (u) and previous 
level of control points

de Boor’s Algorithm

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 …t



Degree 3 spline: n = 3
l = pyramid level

de Boor’s Algorithm

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Pi,l(t) = (1 − αi,l)Pi−1,l−1(t) + αi,lPi,l−1(t) αi,l =
t − ui

ui+1+n−l − ui



de Boor’s Algorithm: Example

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Pi,1(t) = (1 − αi,1)Pi−1,0(t) + αi,1Pi,0(t)

αi,1 =
t − ui

ui+1+3−1 − ui



de Boor’s Algorithm: Example

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Pi+1,2 = (1 − αi+1,2)Pi,1(t) + αi+1,2Pi+1,1(t)

αi+1,2 =
t − ui+1

ui+1+3−2 − ui+1



de Boor’s Algorithm: Example

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Pi+2,3 = (1 − αi+2,3)Pi+1,2(t) + αi+2,3Pi+2,2(t)

αi+2,3 =
t − ui+2

ui+1+3−3 − ui+2



de Boor’s Algorithm: Point Space

P1,0

P0,0

P1,0

P2,0

P3,0

P4,0

P5,0

P0,0 P2,0 P3,0 P4,0 P5,0
t (u)



P2,1 P3,1 P4,1

𝛼 weights (u)

de Boor’s Algorithm: Control Points

P1,0

P0,0

P1,0

P2,0

P3,0

P4,0

P5,0

P0,0 P2,0 P3,0 P4,0 P5,0

P2,1

P3,1
P4,1

t (u)



P3,2 P4,2

𝛼 weights (u)
P2,1 P3,1 P4,1

𝛼 weights (u)

de Boor’s Algorithm: Control Points

P1,0

P0,0

P1,0

P2,0

P3,0

P4,0

P5,0

P0,0 P2,0 P3,0 P4,0 P5,0

P2,1

P3,1
P4,1

P3,2
P4,2

t (u)



P4,3

𝛼 weights (u)

P3,2 P4,2

𝛼 weights (u)
P2,1 P3,1 P4,1

𝛼 weights (u)

de Boor’s Algorithm: Control Points

P1,0
t (u)

P0,0

P1,0

P2,0

P3,0

P4,0

P5,0

P0,0 P2,0 P3,0 P4,0 P5,0

P2,1

P3,1
P4,1

P3,2
P4,2P4,3



de Boor’s Algorithm

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Degree 3 spline requires 4 control points…



de Boor’s Algorithm

ui-3 ui-2 ui-1 ui ui+1 ui+2 ui+3 ui+4 ui+5 …t

Degree 3 spline requires 4 control points…
And 6 knots…



What about the end positions?



de Boor’s Algorithm

u0 = u1 = u2 = u3 u4 … un-4 un-3 = un-2 = un-1 = un

Knot copied at boundary

(Higher degree means more levels means 
more knots)



Other Spline Types

Hermite
• Can specify derivatives at boundary

Catmull-Rom
• Interpolatory



Further Reading
https://cs.uwaterloo.ca/research/tr/1983/CS-83-09.pdf

(History)
http://www.alatown.com/spline/

(de Boor’s)
https://www.cs.mtu.edu/~shene/COURSES/cs3621/

NOTES/spline/de-Boor.html

http://www.inf.ed.ac.uk/teaching/courses/cg/d3/
deBoor.html

https://cs.uwaterloo.ca/research/tr/1983/CS-83-09.pdf
http://www.alatown.com/spline/
https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/de-Boor.html
http://www.inf.ed.ac.uk/teaching/courses/cg/d3/deBoor.html
http://www.inf.ed.ac.uk/teaching/courses/cg/d3/deBoor.html

