
Level of Detail

Level of Detail (LOD)

Allows for more efficient memory and
processing based on resolution needed
for good user experience

• e.g. farther away things should be
inexpensive

LODs

Mipmaps
Antialiasing
Mesh Reduction
Billboards

Mesh Reduction

Closer objects map to more pixels, so
require higher resolution models

Distant models map to fewer pixels, so
lower resolution models will work

Standard LOD

Create finite set of models
• Typically aim for models with n, n/2, n/

4, … polygons
• Models hand-generated or

automatically decimated
Switch models based on the distance to
viewer

LOD Example

LOD Example

Mesh Decimation

Goal: Reduce mesh complexity (eliminate
triangles) while maintaining “good”
approximation
• Error metric evaluates progress at

each step

Vertex Clustering
Partition space into cells

• Grids [Rossignac-Borrel], spheres [Low-
Tan], octrees, etc

Merge vertices within same cell
• Will degenerate

(Michael Garland, http://graphics.cs.uiuc.edu/~garland)

http://graphics.cs.uiuc.edu/~garland

Vertex Decimation

On original model, iteratively:
1.Rank vertices according to importance
2.Remove unimportant vertex and re-

triangulate

(Michael Garland, http://graphics.cs.uiuc.edu/~garland)

http://graphics.cs.uiuc.edu/~garland

Vertex Pair Contraction

Contract any pair of vertices to achieve
topological simplification

(Michael Garland, http://graphics.cs.uiuc.edu/~garland)

http://graphics.cs.uiuc.edu/~garland

Edge Contraction
Single edge contraction (v1,v2) → v’

1.Move v1 and v2 to position v’
2.Replace all occurrences of v2 with v1
3.Remove v2 and all degenerate triangles

v1
v2

v’

(Michael Garland, http://graphics.cs.uiuc.edu/~garland)

http://graphics.cs.uiuc.edu/~garland

Iterative Edge Contraction

Greedily apply edge contractions:
1. Rank all possible edge contractions

with error it introduces
2. Contract edge with least error
3. Repeat until model is reduced to

desired polygon count

Note: This does not produce optimal
meshes (NP-hard problem)

LOD in Practice

424,376 faces 60,000 faces

50 sec

LOD in Practice

424,376 faces 8000 faces

55 sec

LOD in Practice

424,376 faces 1000 faces

56 sec

Subdivisions and Mesh Reduction
Good subdivision choices can allow for easy

mesh reduction
• Artist works with low-poly base mesh and

high-poly subdivided mesh simultaneously
In practice, though, specific tools still used for

mesh reduction
• Greater control and more options
• Can consider other LOD issues (e.g. level

streaming, LOD swapping, etc)

Simplygon Demonstrations

Reduction:
https://www.youtube.com/watch?

v=zTlJ58IMwG8

Remeshing:
https://www.youtube.com/watch?

v=KieoxDq4Xak

https://www.youtube.com/watch?v=zTlJ58IMwG8
https://www.youtube.com/watch?v=zTlJ58IMwG8
https://www.youtube.com/watch?v=KieoxDq4Xak
https://www.youtube.com/watch?v=KieoxDq4Xak

Tessellation Shader
Pipeline stage that allows for automatic subdivision

on GPU

Involves three stages:
1. Hull or Tessellation Control Shader (TCS)
2. Tessellator or Primitive Generator (PG)
3. Domain Shader or Tessellation Evaluation

Shader (TES)

Note: Naming differences due to DX versus OpenGL

Tessellation Control Shader

Works on a group of vertices that define
control points of surface geometry

Control points form patches

Tessellation Control Shader

Takes patches as input
Emits output patches
Possible to apply transforms to patches

and add or remove patches

Tessellation Levels
Tessellation Levels determines number of

triangles to generate per patch
• Allows for LOD based on camera distance,

number of subdivisions etc

gl_TessLevelInner and
gl_TessLevelOuter determine amount of
tessellation per patch based on inner patches
and outer edges

Primitive Generator

Fixed function
Generates a domain of normalized

subdivisions
• 2D square coordinates
• 3D barycentric coordinates

Note: Still does not have access to the
actual patches

Tessellation Evaluation Shader

Takes information from the TCS, the
Domain generated in PG, and the patch
information (position, normal, etc)

Creates one vertex for each barycentric
coordinate based on TCS polynomial
and patch

Tessellated vertices passed down the
pipeline

Pipeline Overview

https://developer.download.nvidia.com/assets/gameworks/downloads/regular/GDC17/
RealTimeRenderingAdvances_Subdivision_GDC17_FINAL.pdf

https://developer.download.nvidia.com/assets/gameworks/downloads/regular/GDC17/RealTimeRenderingAdvances_Subdivision_GDC17_FINAL.pdf
https://developer.download.nvidia.com/assets/gameworks/downloads/regular/GDC17/RealTimeRenderingAdvances_Subdivision_GDC17_FINAL.pdf

Tessellation Shader in Industry
• One of the newer pieces of the shader pipeline
• Allows for interactive subdivision functionality
• Integrated into Pixar’s OpenSubdiv library:
http://graphics.pixar.com/opensubdiv/docs/intro.html

http://graphics.pixar.com/opensubdiv/docs/intro.html

LOD Switching

Popping is the sudden change in
appearance as models swap

Flickering is the back-and-forth change
between two resolutions at switching
distance

Reducing Popping

Create additional models at intermediate
resolutions

Change distance of swap
Might also be an issue with texture

streaming

Reducing Flickering

Show blended combination of model
• Image blending (alpha blending)
• Geometric blending (geomorphing)

Define two distinct thresholds for switching
• One determines distance for

refinement, the other for reduction

Hysteresis Threshold

LOD

DistanceTincrease Tdecrease

Billboards

Idea: Extreme LOD to reduce
all geometry to one or more
textured polygons
• Considered image-based

rendering
• Sometimes called sprites

Generating Billboards
By hand – a skilled artist does the work!

• Paints color and alpha
• Generate a sequence of textures to animate

Automatically:
• Render a complex model and capture

images
• Detect alpha by looking for background

pixels
• Blend alpha at boundary for good anti-

aliasing

Billboard Configurations

Billboard polygons layouts:
• Single rectangle
• Two rectangles at right angles
• Several rectangles about a common

axis
• Several rectangles stacked

Single Polygon

Billboard consists of a single textured
polygon

• What happens when it’s not pointed at
the viewer?

How can we solve this?

Billboard Orientation

Point Sprites
• Billboard rotated about a central point

that faces the camera
Axis Billboards

• Billboard aligned along an axis
(arbitrary or axis-aligned)

Aligning a Billboard

Billboard has a “forward” vector F
Billboard has an “up” vector A
Viewer has direction V

Goal: determine the angle to rotate the
forward by to orient with the viewer

Computing New Forward

Calculate D:

Compute angle γ between F and D:

()AVAD ××=

!
!
"

#
$
$
%

& •
= −

DF
DF1cosγ

Multi-Polygon Billboards

Use two polygons at right
angles

• No alignment with
viewer

• What is this good for?

More polygons look better
Can render by blending or
using depth buffer

View Dependent Billboards

For objects that are not
rotationally symmetric

Compute multiple textures for
multiple view points

Fix polygon but vary texture
Can use 3D textures and

hardware texture filtering

Imposter Example

Reducing Geometry

Ways to reduce geometry:
1. Reduce the number of triangles

• Visibility culling
• Level of detail

2. Reduce amount of data sent per
triangle

• Mesh compression

Why Compress Meshes?

Primarily for networked applications (helps
with memory bandwidth)

Observation: Vertex data includes
position, color, texture, normal, etc

Much of this data is redundant
• Triangles share vertices
• Vertices share colors, etc

Mesh Compression

Pipeline hardware usually has small buffers
• Accepts data in a stream

Must decompress in software
• Handle triangle connectivity separately

from vertex attributes
• Create long strips or implicit

connectivity structures

