Vector and Affine Math I

Points in Euclidean Space \mathbb{R}^{n}

Location in space

Tuple of n coordinates x, y, z, etc

$$
p=\left(p_{x}, p_{y}, p_{z}\right)
$$

Cannot be added or multiplied together

Vectors: "Arrows in Space"

Vectors are point changes
Also number tuple: coordinate changes

$$
\vec{v}=\underbrace{(4,2)}_{\Delta x=4} \Delta y=2
$$

Exist independent of any reference point

Vector Arithmetic

Subtracting points gives vectors

- Vector between p and $\mathrm{q}: \mathrm{q}-\mathrm{p}$

Vector Arithmetic

Subtracting points gives vectors

- Vector between p and q : $q-p$

Add vector to point to get new point

$$
p+\vec{v}
$$

p

Vector Arithmetic

Vectors can be

- added (tip to tail)

Vector Arithmetic

Vectors can be

- added (tip to tail)
- subtracted

Vector Arithmetic

Vectors can be

- added (tip to tail)

- subtracted
- scaled

Vector Norm

Vectors have magnitude (length or norm)

$$
\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}+\cdots}
$$

- n-dimensional Pythagorean theorem

Vector Norm

Vectors have magnitude (length or norm)

$$
\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}+\cdots}
$$

Triangle inequality: $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$

Unit Vectors

Vectors with $\|\vec{v}\|=1$ unit or normalized

- encode pure direction

Borrowed from physics: "hat notation" \hat{v}

Any non-zero vector can be normalized:

$$
\hat{v}=\frac{\vec{v}}{\|\vec{v}\|}
$$

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

- (works in any dimension)
$\vec{v} \cdot \hat{w}$ is length of \vec{v} "in the \hat{w} direction"

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

Alternate formula:

$$
\vec{v} \cdot \hat{w}=\|\vec{v}\| \cos \theta
$$

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

Alternate formula:

$$
\begin{aligned}
& \vec{v} \cdot \hat{w}=\|\vec{v}\| \cos \theta \\
& \vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
\end{aligned}
$$

Dot Product and Angles

Note $\cos \theta=\frac{\vec{v} \cdot \vec{u}}{\|\vec{v}\|\|\vec{w}\|}$ requires only multiplications and sqrts

Useful because trig calls are slow

Also in a pinch (slow): $\theta=\arccos \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$

Vector Projection

Projection onto and out of

$$
\begin{gathered}
\mathbf{w}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} \\
\mathbf{u}-\mathbf{w}
\end{gathered}
$$

Cross Product

Takes two vectors, returns vector

$$
\vec{v} \times \vec{w}=\left(v_{y} w_{z}-v_{z} w_{y}, v_{z} w_{x}-v_{x} w_{z}, v_{x} w_{y}-v_{y} w_{x}\right)
$$

- works only in 3D

Direction: perpendicular to both \vec{v}, \vec{w}

Magnitude: $\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta$

Cross Product Intuition

- Magnitude is area of parallelogram formed by vectors
- Orthogonal direction to vectors

Cross Product Intuition

Use right-hand rule

"Right-hand" "Rule" (via DALL-E)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors

$$
\hat{n}=\frac{u \times v}{\|u \times v\|}
$$

Relation to angles: $\sin \theta=\frac{\|u \times v\|}{\|u\| \| v}$

Even better: $\tan \theta=\frac{\|u \times v\|}{u \cdot v}$ no sqrts!

Euclidean Coordinates

A vector in 2D $\left(v_{x}, v_{y}\right)$ can be interpreted as instructions
"move to the right v_{x} and up v_{y} "

Euclidean Coordinates

A vector in 2D $\left(v_{x}, v_{y}\right)$ can be interpreted as instructions
"move to the right v_{x} and up v_{y} "

In other words: $\left(v_{x}, v_{y}\right)=v_{x} \hat{x}+v_{y} \hat{y}$

(Finite) Vector Spaces

We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$

- basis vectors: "directions" to travel
- span: all linear combinations

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Adding all vectors in vector space to point p when dimension is:

- 0 : just p
- 1: line through p
- 2: plane through p
- 3+: hyperplane through p

Vectors and Bases

- Pick a basis, order the vectors in it
- All vectors in the space can be represented as a sequence of coordinates
- Examples:
- Cartesian 3-space
- Basis [ij k]
- Linear combination: xi + yj + zk
- Coordinate representation [x y z]

Identity Matrix

Square diagonal matrix:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Identity matrix doesn't change the matrix it's multiplied by

Inverse Matrix

- For some square matrices, inverse exists:

$$
A A^{-1}=A^{-1} A=1
$$

- A non-invertible matrix is called singular (determinant is 0)
- Very expensive to compute on large matrices!

Determinant

Maps square matrix to real number

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

In 2D measures signed volume of parallelogram

Determinant

In 3D, measures signed volume of parallelpiped
$\operatorname{det}\left[\vec{a}_{\star 1}\left|\vec{a}_{\star 2}\right| \vec{a}_{\star 3}\right]$

Transpose

Flips indices; "reflect about diagonal"

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]^{T}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]
$$

Transpose of vector is row vector

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]
$$

Properties of Orthogonal Matrices

Orthogonal matrices have columns and rows that are orthonormal

- All vectors of unit length
- All vectors perpendicular to each other

Guaranteed to be invertible
Inverse is the transpose

