Vector and Affine Math I

Points in Euclidean Space \mathbb{R}^n

Location in space

Tuple of n coordinates x, y, z, etc

$$p = (p_x, p_y, p_z)$$

Cannot be added or multiplied together

Vectors: "Arrows in Space"

Vectors are **point changes** Also number tuple: coordinate changes

$$\vec{v} = (4, 2)$$
$$\Delta y = 2$$
$$\Delta x = 4$$

Exist independent of any reference point

Subtracting points gives vectors

Vector between p and q: q - p

Subtracting points gives vectors

Vector between p and q: q – p

Add vector to point to get new point

Vectors can be

• added (tip to tail)

Vectors can be

• added (tip to tail)

subtracted

Vectors can be

• added (tip to tail)

Vector Norm

Vectors have magnitude (length or norm)

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2 + \cdots}$$

• n-dimensional Pythagorean theorem

Vector Norm

Vectors have magnitude (length or norm)

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2 + \cdots}$$

Triangle inequality: $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$

Unit Vectors

Vectors with $\|\vec{v}\| = 1$ unit or normalized

encode pure direction

Borrowed from physics: "hat notation" \hat{v}

Any non-zero vector can be normalized:

$$\hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$$

Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$

• (works in any dimension)

 $\vec{v} \cdot \hat{w}$ is length of \vec{v} "in the \hat{w} direction"

Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$

Alternate formula:

$$\vec{v} \cdot \hat{w} = \|\vec{v}\| \cos \theta$$

Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$ Alternate formula: $\vec{v} \cdot \hat{w} = \|\vec{v}\| \cos \theta$ $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$

Dot Product and Angles

Note $\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$ requires only multiplications and sqrts

Useful because trig calls are **slow**

Also in a pinch (slow): $\theta = \arccos \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$

Vector Projection

Projection onto and out of

Cross Product

Takes two vectors, returns vector $\vec{v} \times \vec{w} = (v_y w_z - v_z w_y, v_z w_x - v_x w_z, v_x w_y - v_y w_x)$

works only in 3D

Direction: perpendicular to both \vec{v}, \vec{w}

Magnitude: $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin \theta$

Cross Product Intuition

- Magnitude is area of parallelogram formed by vectors
- Orthogonal direction to vectors

Cross Product Intuition

Use right-hand rule

"Right-hand" "Rule" (via DALL-E)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors

$$\hat{n} = \frac{u \times v}{\|u \times v\|}$$

Relation to angles:
$$\sin \theta = \frac{\|u \times v\|}{\|u\| \|v\|}$$

Even better: $\tan \theta = \frac{\|u \times v\|}{u \cdot v}$

Euclidean Coordinates

A vector in 2D (v_x, v_y) can be interpreted as instructions

"move to the right v_x and up v_y "

Euclidean Coordinates

A vector in 2D (v_x, v_y) can be interpreted as instructions

"move to the right v_x and up v_y "

In other words: $(v_x, v_y) = v_x \hat{x} + v_y \hat{y}$

(Finite) Vector Spaces

- We say: 2D vectors are **vector space** of vectors **spanned** by **basis vectors** $\{\hat{x}, \hat{y}\}$
- basis vectors: "directions" to travel
- span: all linear combinations

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Adding all vectors in vector space to point *p* when dimension is:

- 0: just *p*
- 1: line through *p*
- 2: plane through *p*
- 3+: hyperplane through *p*

Vectors and Bases

- Pick a basis, order the vectors in it
 - All vectors in the space can be represented as a sequence of coordinates
- Examples:
 - Cartesian 3-space
 - Basis [i j k]
 - Linear combination: xi + yj + zk
 - Coordinate representation [x y z]

Identity Matrix

Square diagonal matrix:

Identity matrix doesn't change the matrix it's multiplied by

 $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$

Inverse Matrix

- For some square matrices, inverse exists: $AA^{-1} = A^{-1}A = I$
- A non-invertible matrix is called singular (determinant is 0)
- Very expensive to compute on large matrices!

Determinant

Maps square matrix to real number

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

In 2D measures signed volume of parallelogram

Determinant

In 3D, measures signed volume of parallelpiped

Transpose

Flips indices; "reflect about diagonal"

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Transpose of vector is **row vector**

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}^T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

Properties of Orthogonal Matrices

Orthogonal matrices have columns and rows that are orthonormal

- All vectors of unit length
- All vectors perpendicular to each other
 Guaranteed to be invertible
 Inverse is the transpose