Physical Simulation

Things We Can Simulate

- Point Masses
- Collision Detection and Response
- Rigid Bodies
- Articulated Systems and Constraints
- Soft Bodies
- Fluid Dynamics

Point Masses

Remember that particle systems are functionally a collection of point masses that obey some set of rules

What rules might particles in a physical simulation follow?

Newton's Equations of Motion

Describe motion over time by modeling force in relationship to object trajectory

• F = ma

Integrating over time captures a system's physical behaviors

How to discretize?

Vector Field

At any point in space, function **g(x, t)** defines a vector field dictating velocity for x at time t

Particle in a Vector Field

 Particle has a position and a velocity based on the vector field

How to calculate a new position?

Differential Equations

 $\dot{x} = g(\vec{x}, t)$

is a first-order differential equation! Solve for **x** over time by starting at initial point and stepping along the vector field

Euler's Method

• Take linear time steps (Δt) along flow: $\vec{\mathbf{x}}(t + \Delta t) = \vec{\mathbf{x}}(t) + \Delta t \cdot \dot{\mathbf{x}}(t) = \vec{\mathbf{x}}(t) + \Delta t \cdot g(\vec{\mathbf{x}}, t)$

• Write as a time iteration:

$$\vec{\mathbf{x}}^{i+1} = \vec{x}^i + \Delta t \cdot \vec{\mathbf{v}}^i$$

Euler across Time Steps

What do you notice about Euler's method?

Explicit Euler Properties

- Simplest numerical method
- Bigger steps lead to bigger errors

Particle in a Force Field

Now consider a particle with mass in a force field **f**

We can write out Newton's law as follows: $\vec{f} = m\vec{a} = m\ddot{x}$

Since **f** depends on particle position, velocity and time:

$$\ddot{x} = \frac{\vec{f}(\vec{x}, \dot{x}, t)}{m}$$

Second Order Equations

$$\ddot{x} = \frac{\vec{f}(\vec{x}, \dot{x}, t)}{m}$$

is a second order differential equation... we'd rather not deal with this!

Rather than solve directly, create a pair of coupled first order equations:

$$\begin{bmatrix} \dot{x} = \vec{v} \\ \dot{v} = \frac{\vec{f}(\vec{x}, \vec{v}, t)}{m} \end{bmatrix}$$

Differential Equation Solver

Since $\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} \vec{v} \\ \frac{\vec{f}}{m} \end{bmatrix}$

Euler's method:

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \dot{x}(t)\Delta t$$
$$\dot{x}(t + \Delta t) = \dot{x}(t) + \ddot{x}(t)\Delta t$$

With substitutions:

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \vec{v}(t)\Delta t$$
$$\dot{x}(t + \Delta t) = \dot{x}(t) + \frac{\vec{f}(\vec{x}, \dot{x}, t)}{m}\Delta t$$

Euler Iterative Form

$$\vec{x}^{i+1} = \vec{x}^i + \vec{v}^i \Delta t$$
$$\vec{v}^{i+1} = \vec{v}^i + \frac{\vec{f}^i}{m} \Delta t$$

Still performs poorly for large time steps!

Ideally we want a more stable integrator...

Many Integrators Exist!

- Runge-Kutta
- Implicit Integration
- Semi-implicit Euler
- Verlet
- Vary in terms of complexity and computation

Verlet Integration

A better solver with greater stability and no additional computational overhead (popular in realtime applications)

Three versions:

- Position
- Velocity
- Leapfrog

Verlet Flavors

- **Position Verlet**
 - Uses 2 previous positions to model velocity
- Leapfrog
 - Alternately updates position and velocity
- Velocity Verlet
 - Updates position and velocity in same time step

Position Verlet

Handles velocities implicitly:

$$\overrightarrow{x}^{i+1} = \overrightarrow{x}^{i} + (\overrightarrow{x}^{i} - \overrightarrow{x}^{i-1}) + \dot{v}\Delta t^{2}$$
$$\overrightarrow{x}^{i-1} = \overrightarrow{x}^{i}$$

- Requires constant time steps and two steps to start
- Simple and cheap to implement

Applying Forces

Each particle experiences a force/forces

Common forces:

- Constant (gravity)
- Position/time dependent (force fields)
- Velocity dependent (drag)
- Combinations (damped springs)

Force Examples

Gravity:
$$\vec{f}_{grav} = m\vec{G}$$

Viscous drag: $\vec{f}_{drag} = -k\vec{v}$

One body spring:
$$\vec{f} = -k_{spring}(|\Delta \vec{x}| - r)$$

One body damped spring:

$$\vec{f} = -[k_{spring}(|\Delta \vec{x}| - r) + k_{damp}|\vec{v}|]$$

Collision Detection and Response

Collision Detection: Determine when an intersection has happened

Collision Response: Determine what to do when intersection detected

Collision Detection

A very familiar problem! (think ray-tracing)

Must also consider particle velocity

Collision Response

- After Contact (a posteriori)
 - Run simulation
 - "Roll back" if intersection occurs
- Before Contact (a priori)
 - Predict time of collision
 - Update position accordingly
- Resting Contact
 - Two objects are in contact with each other
 - A surprisingly difficult special case!

Rigid Bodies

Extends idea of point-mass

- Bodies can be interconnected
- Bodies are rigid relative to each other

Articulated Systems and Constraints

Not all rotations are physically plausible Solve by limiting joint movement with constraints Use of inverse kinematics to solve for all joint angles based on final position of child bones

Soft Bodies

Distance between particles is not fixed Generally a very expensive computation Easier to simulate as a system of rigid body springs

Cloth Simulation Demo

https://www.youtube.com/watch? v=UhmZ3uigDvo

Fluid Dynamics

Describes the flow of fluids and gases Models properties such as:

- Flow velocity
- Pressure
- Density
- Temperature

Navier-Stokes

Applies Newton's second law to fluid motion to calculate flow velocity

Requires solving for fluid's:

- Diffusion (change in concentration)
- Advection (transport of material)

Can solve using grid-based or particlebased methods

Grid vs Particle

Boundaries

Define interactions between fluid and other objects/types of fluid

Common ones:

- Slip (does not cross boundary)
- No-slip (at rest at boundary)
- Inflow (enters boundary with velocity)
- Outflow (can leave boundary)

Boundary Conditions

Usually specified as values for function at boundary

- e.g. velocity = 0 for no-slip
- Can also define boundary in terms of pressure or other domains

Must resolve violations of boundary conditions if they occur during advection step

Fluid Demo

https://vimeo.com/247574785

Curl-Noise

Non-physically-based method for approximating fluid flow

- Create a vector field using Perlin noise
- Take curl (rotation) of this field to generate a divergence-free (doesn't shrink or expand) velocity field
- A popular method in real-time applications!

https://www.cs.ubc.ca/~rbridson/docs/bridsonsiggraph2007-curlnoise.pdf

Curl Noise Demo

https://www.youtube.com/watch? v=8TNZS2AkFNs

