
GPUs

Why GPUs?

In order to render a scene, we must
determine the color assigned to each
pixel (usually based on light transport)

Work Per Fragment

Fixed work per fragment
Ideally process several hundred

thousands of these at 60Hz

sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

unshaded
fragment

shaded
fragment

Working on the CPU

CPU is big and complex but fast on a single thread
…But even a really fast thread isn’t sufficient for

shader execution…

Caches

Prefetch Unit

Fetch/Decode

ALU

Branch
Predictor

Instruction
Scheduler

Execution
Context

unshaded
fragment

shaded
fragment

Graphics Processing Unit

Built for rendering pipeline
• Process large number of vertices
• Assumes similar, relatively simple,

operations

What sort of architecture facilitates this?

Throughput Architecture

Simpler cores but lots of them in parallel!

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Remember the Rendering Pipeline?

Modern GPU Characteristics
• Homogeneous

programmable cores
for all programmable
stages

• Relatively few special
purpose texture
units

• Even fewer fixed
function units

• Task parallel at
pipeline level

Primitive
Assembly

Rasterizer

ROP
(Output Blend)

Work
Scheduler

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture Unit

Texture Unit

Texture Unit

SIMD

• Single instruction, multiple data
• Large vectors of data that have the

same operation applied to individual
elements in parallel

• Based on old super computing
techniques but has regained popularity
in modern architectures (both CPU
and GPU)

Shared Instructions

• Same thing is done in parallel for all fragments/verts/etc
• SIMD amortizes instruction handling over multiple ALUs

Fetch/Decode

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Shared Memory

Instruction Cache

Multiple Types of Processing
GPUs do more than shading

• Allow execution of more
than one program

Replicate SIMD processors
for different SIMD
computations in parallel

8 programs running in parallel, 128 threads in parallel

Problems?

What situations does this throughput style
of architecture not handle well?

Branching and Stalling

• Threads stall when
next instruction
depends on previous
instruction’s result

• Pipeline
dependencies

• Memory latency
• How to handle these?

T F F T F FT F

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Ti
m

e

Multithreading
• We can assume there are more threads

(scheduled computations) than
processors

• Threads with similar code executed in
“warps” to maintain minimal divergence

• Interleaving warp execution keeps
hardware busy when an individual
warp stalls

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

extra
latency

extra
latency

Working with Latency

• Latency hiding
• Executing many warps can minimize

latency (delay in processing)
• More context switching requires more

storage (values in registers etc)

GPU Memory and Architecture
Designed for throughput, so bandwidth is

critical
• Wide bus (150 GB/s+)
• High bandwidth DRAM organization
• Warp scheduling for latency hiding
• Small execution contexts and efficient

local memory
• Limited cache hierarchy

Example: Pascal Architecture

Global and Shared Memory
Global memory scoped for entire program

• Functions like a heap
• Slowest (on device) access
• Good access patterns minimize cache touches

Shared memory located on chip
• Scoped to block
• Very fast and localized
• Good access patterns minimize bank accesses

by different threads

Local Memory and Registers

Local memory is scoped to a thread
• Includes everything that does not fit

onto registers
• Registers are very fast, so spilling into

local memory leads to slowdowns

Programming on the GPU

The programmable shader pipeline is
highly specific to rendering.

Idea: Create a language that can harness
GPU throughput with more accessible
programming paradigms

GPGPUs
• Solve non-graphics problems on GPUs

• Textures act as memory
• Compute shaders allow for small, highly

parallel executions
• Methods like map, reduce, scatter,

gather, etc provided for convenience
• Languages like CUDA and OpenCL

facilitate development

CUDA Example

main function runs on host (CPU)
• Allocates memory on host and device

global memory
kernels that run on device (GPU) specified

with __global__
• Functions treated much like standard

C functions

CUDA Example: SAXPY

https://devblogs.nvidia.com/easy-
introduction-cuda-c-and-c/

For every 2d vector (x, y), multiply
constant a times x, then add y

Easily parallelized and simple algorithm

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/

Host Code
int main(void) {

/* Allocate variables here */

//Allocate memory on host
x = (float*)malloc(N*sizeof(float));
y = (float*)malloc(N*sizeof(float));

//Allocate memory on device
cudaMalloc(&d_x, N*sizeof(float));
cudaMalloc(&d_y, N*sizeof(float));

/* Initialize host array here */

//Copy host array data to device
cudaMemcpy(d_x, x, N*sizeof(float),

cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float),

cudaMemcpyHostToDevice);

//Launch the device kernel on N+255/256 thread blocks with 256
threads each

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

//Clean up host and device memory
cudaFree(d_x);
cudaFree(d_y);
free(x);
free(y);

}

Device Code
__global__
void saxpy(int n, float a, float *x, float *y) {

//Get global index into array
int i = blockIdx.x*blockDim.x + threadIdx.x;
//Run saxpy
if (i < n) y[i] = a*x[i] + y[i];

}

Note: blockIdx, blockDim, threadIdx predefined in CUDA

GPGPU Challenges

• Parallelization algorithms
• Memory for throughput architecture
• Work scheduling on throughput

architecture
• Hiding latency

Toward Heterogeneous Architecture

Idea: CPUs are good at some things and GPUs are
good at others. Why not have them closer together
to get the best of both worlds?

• Already commonly used in embedded devices (e.g.
system on a chip)

• Has attractive properties for general computing as
well

• Also presents numerous software and hardware
challenges at all levels of programming!

