
GPUs



Why GPUs?

In order to render a scene, we must 
determine the color assigned to each 
pixel (usually based on light transport)



Work Per Fragment

Fixed work per fragment
Ideally process several hundred 

thousands of these at 60Hz

sample r0, v4, t0, s0 
mul r3, v0, cb0[0] 
madd r3, v1, cb0[1], r3 
madd r3, v2, cb0[2], r3 
clmp r3, r3, l(0.0), l(1.0) 
mul o0, r0, r3 
mul o1, r1, r3 
mul o2, r2, r3 
mov o3, l(1.0)

unshaded 
fragment

shaded 
fragment



Working on the CPU

CPU is big and complex but fast on a single thread
…But even a really fast thread isn’t sufficient for 

shader execution…
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Graphics Processing Unit

Built for rendering pipeline
• Process large number of vertices
• Assumes similar, relatively simple, 

operations

What sort of architecture facilitates this?



Throughput Architecture

Simpler cores but lots of them in parallel!
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Remember the Rendering Pipeline?



Modern GPU Characteristics
• Homogeneous 

programmable cores 
for all programmable 
stages

• Relatively few special 
purpose texture 
units

• Even fewer fixed 
function units

• Task parallel at 
pipeline level
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SIMD

• Single instruction, multiple data
• Large vectors of data that have the 

same operation applied to individual 
elements in parallel

• Based on old super computing 
techniques but has regained popularity 
in modern architectures (both CPU 
and GPU)



Shared Instructions

• Same thing is done in parallel for all fragments/verts/etc
• SIMD amortizes instruction handling over multiple ALUs
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Multiple Types of Processing
GPUs do more than shading

• Allow execution of more 
than one program

Replicate SIMD processors 
for different SIMD 
computations in parallel

8 programs running in parallel, 128 threads in parallel



Problems?

What situations does this throughput style 
of architecture not handle well?



Branching and Stalling

• Threads stall when 
next instruction 
depends on previous 
instruction’s result

• Pipeline 
dependencies

• Memory latency
• How to handle these? 
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Multithreading
• We can assume there are more threads 

(scheduled computations) than 
processors

• Threads with similar code executed in 
“warps” to maintain minimal divergence

• Interleaving warp execution keeps 
hardware busy when an individual 
warp stalls
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Working with Latency

• Latency hiding
• Executing many warps can minimize 

latency (delay in processing)
• More context switching requires more 

storage (values in registers etc)



GPU Memory and Architecture
Designed for throughput, so bandwidth is 

critical
• Wide bus (150 GB/s+)
• High bandwidth DRAM organization
• Warp scheduling for latency hiding
• Small execution contexts and efficient 

local memory
• Limited cache hierarchy



Example: Pascal Architecture



Global and Shared Memory
Global memory scoped for entire program

• Functions like a heap
• Slowest (on device) access
• Good access patterns minimize cache touches

Shared memory located on chip
• Scoped to block
• Very fast and localized
• Good access patterns minimize bank accesses 

by different threads



Local Memory and Registers

Local memory is scoped to a thread
• Includes everything that does not fit 

onto registers
• Registers are very fast, so spilling into 

local memory leads to slowdowns



Programming on the GPU

The programmable shader pipeline is 
highly specific to rendering.  

Idea: Create a language that can harness 
GPU throughput with more accessible 
programming paradigms



GPGPUs
• Solve non-graphics problems on GPUs

• Textures act as memory
• Compute shaders allow for small, highly 

parallel executions
• Methods like map, reduce, scatter, 

gather, etc provided for convenience
• Languages like CUDA and OpenCL 

facilitate development



CUDA Example

main function runs on host (CPU)
• Allocates memory on host and device 

global memory
kernels that run on device (GPU) specified 

with __global__
• Functions treated much like standard 

C functions



CUDA Example: SAXPY

https://devblogs.nvidia.com/easy-
introduction-cuda-c-and-c/

For every 2d vector (x, y), multiply 
constant a times x, then add y

Easily parallelized and simple algorithm

https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/


Host Code
int main(void) {   

/* Allocate variables here */

//Allocate memory on host
x = (float*)malloc(N*sizeof(float));   
y = (float*)malloc(N*sizeof(float));    

//Allocate memory on device
cudaMalloc(&d_x, N*sizeof(float));
cudaMalloc(&d_y, N*sizeof(float));



/* Initialize host array here */

//Copy host array data to device
cudaMemcpy(d_x, x, N*sizeof(float), 

cudaMemcpyHostToDevice);  
cudaMemcpy(d_y, y, N*sizeof(float), 

cudaMemcpyHostToDevice);

//Launch the device kernel on N+255/256 thread blocks with 256 
threads each 

saxpy<<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);

//Clean up host and device memory
cudaFree(d_x);   
cudaFree(d_y);   
free(x);   
free(y);

}



Device Code
__global__ 
void saxpy(int n, float a, float *x, float *y) {  

//Get global index into array
int i = blockIdx.x*blockDim.x + threadIdx.x; 
//Run saxpy  
if (i < n) y[i] = a*x[i] + y[i]; 

}

Note: blockIdx, blockDim, threadIdx predefined in CUDA



GPGPU Challenges

• Parallelization algorithms
• Memory for throughput architecture
• Work scheduling on throughput 

architecture
• Hiding latency



Toward Heterogeneous Architecture

Idea: CPUs are good at some things and GPUs are 
good at others.  Why not have them closer together 
to get the best of both worlds?

• Already commonly used in embedded devices (e.g. 
system on a chip)

• Has attractive properties for general computing as 
well

• Also presents numerous software and hardware 
challenges at all levels of programming!


