Vector and Affine Math II

Linear Transformations

Given vector space V and W , function f : V
$\rightarrow>$ W is a linear map (linear
transformation) if
$f\left(a_{1} \mathbf{v}_{1}+\ldots+a_{m} \mathbf{v}_{m}\right)=a_{1} f\left(\mathbf{v}_{1}\right)+\ldots+a_{m} f\left(\mathbf{v}_{m}\right)$

Transformations

A 2D transformation matrix:

$$
\mathbf{M}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Applied to a 2D vector:

$$
\begin{gathered}
\mathbf{v}^{\prime}=\mathbf{M} \mathbf{v} \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

In which case: $\quad x^{\prime}=a x+b y$

$$
y^{\prime}=c x+d y
$$

Scaling

Suppose $b=c=0$, but a and d can take on any positive value...

Scaling matrix: $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$
What happens if a and d are not equal?

Reflection

Suppose $b=c=0$, but either a or d goes negative

Reflection matrices:

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Across which axes will each of these matrices reflect?

Shear

Suppose $a=d=1$, but b or c changes value

Shear matrix:

$$
\left[\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right] \quad \begin{aligned}
& x^{\prime}=x+b y \\
& y^{\prime}=y
\end{aligned}
$$

Skews in one dimension in 2D What does a shear do in 3D?

In-class Exercises

1. Create a 2D box with Euclidean coordinates. Now separately:
2. Apply a uniform and non-uniform scaling to its vertices
3. Apply reflection to its vertices 3. Apply a shear to its vertices
4. Draw all of these transformations
For all activities, show matrices

Rotation

Rotation about the origin:

$$
M_{R}=R(\theta)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right]} \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
-\sin (\theta) \\
\cos (\theta)
\end{array}\right]}
\end{aligned}
$$

Linear Transformation Limitations

No notion of an origin

What important graphics operation does this leave out?

Affine Transformations

- Augment linear space \mathbf{u}, \mathbf{w} with an origin, \mathbf{t}
- u and \mathbf{w} are basis vectors
- t is a point
- A change of frame looks like:

$$
\mathbf{p}^{\prime}=x \cdot \mathbf{u}+y \cdot \mathbf{w}+\mathbf{t}
$$

- How do you represent linear transformations within affine frames?

Homogeneous Coordinates

Loft problem into next dimension:

$$
\begin{aligned}
\mathbf{p}^{\prime} & =\mathbf{M} \mathbf{p} \\
& =\left[\begin{array}{lll}
a & b & t_{x} \\
c & d & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{u} & \mathbf{w} & \mathbf{t}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& =x \cdot \mathbf{u}+y \cdot \mathbf{w}+1 \cdot \mathbf{t}
\end{aligned}
$$

Note that $\left[\begin{array}{lll}a & c & 0\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{ll}b & d\end{array}\right]^{\mathrm{T}}$ represent vectors and $\left[\begin{array}{lll}t_{x} & t_{y} & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}x & y & 1\end{array}\right]^{\mathrm{T}}$ and $\left[\begin{array}{lll}x^{\prime} & y^{\prime} & 1\end{array}\right]^{\mathrm{T}}$ represent points.

In-class Exercises

1. Create a 2D box with Euclidean coordinates.

Now separately:

1. Apply a uniform and non-uniform scaling to its vertices
2. Apply reflection to its vertices
3. Apply a shear to its vertices
4. Apply a translation then a rotation
5. Apply a rotation then a translation
6. Draw all of these transformations
For all activities, show matrices

Rotation Around Arbitrary Points

1. Translate q to origin

2. Rotate

3. Translate back

Note that transformation order matters!

Additional Concepts

- Parametric Line Segments
- Plane Equation
- Barycentric Coordinates

All core concepts for working with raytracing! (Assignment 1)

Parametric Line Segment

Linear interpolation along a line, ray or line segment:

$$
\begin{gathered}
p(t)=p_{0}+t\left(p_{1}-p_{0}\right)=(1-t) p_{0}+t p_{1} \\
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]+t\left[\begin{array}{c}
x_{1}-x_{0} \\
y_{1}-y_{0} \\
z_{1}-z_{0}
\end{array}\right]=\left[\begin{array}{c}
(1-t) x_{0}+t x_{1} \\
(1-t) y_{0}+t y_{1} \\
(1-t) z_{0}+t z_{1}
\end{array}\right]}
\end{gathered}
$$

Line segment: $0 \leq t \leq 1$
Ray:

$$
\begin{array}{r}
0 \leq t \leq \infty \\
-\infty \leq t \leq \infty
\end{array}
$$

Line:

Plane Equation

Given normal vector N orthogonal to the plane and any point p^{\prime} in the plane, p is in plane if: $\left(p-p^{\prime}\right) \cdot N=0$

This can be rewritten: $N \cdot p+d=0$
Where

$$
d=-\left(N_{x} p_{x}^{\prime}+N_{y} p_{y}^{\prime}+N_{z} p_{z}^{\prime}\right)
$$

Plane Equation

$$
\begin{gathered}
N \cdot p+d=0 \\
{\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+d=a x+b y+c z+d=0}
\end{gathered}
$$

Triangle Normal

$$
N=\text { normalize }\left(\left(v_{1}-v_{0}\right) \times\left(v_{2}-v_{0}\right)\right)
$$

Note: Order matters to point the normal in "frontfacing" direction (CCW for right-handed systems)

Barycentric Coordinates

A set of points can be used to create an affine frame

Form a frame with an origin C and vectors from C to other vertices: $\mathbf{u}=\mathrm{A}-\mathrm{C} \quad \mathbf{v}=\mathrm{B}-\mathrm{C} \quad \mathrm{t}=\mathrm{C}$

Write p in this coordinate frame: $\mathbf{p}=\alpha \mathbf{u}+\beta \mathbf{v}+\mathbf{t}$

Coordinates (α, β, γ) are called the barycentric coordinates of p relative to A, B, and C

In-class Exercises

1. Create a 2D box with Euclidean coordinates. Now separately:
2. Apply a uniform and non-uniform scaling to its vertices
3. Apply reflection to its vertices
4. Apply a shear to its vertices
5. Apply a translation then a rotation
6. Apply a rotation then a translation
7. Draw all of these transformations
8. Find point p' along an edge of this box using the parametric equation and t values $0.1,0.4$ and 0.7
9. Create a point p " within the box and calculate its barycentric coordinates using one of the box points as your origin
For all activities, show matrices
