
Shading

Goal of Shading

Capture light and material interactions in a
scene based on camera position and
orientation

The rendering equation is the physically-
based model for light and material
interactions

The Rendering Equation

The Rendering Equation

The Rendering Equation

BRDF
´BidirecWional ReflecWance

DiVWribXWion FXncWionµ
(encodes material)

• Bidirectional Reflectance Distribution
Function

• Captured for different materials, stored in
libraries

BRDFs

BRDFs in Modern Graphics

• Provide physically-based model for
defining light reflectance

• Standard in modern graphics and game
engines

Working with BRDFs
Artists modify material constants
BRDF shaders handle lighting calculations

Local Illumination
• Solving the full rendering equation is too

expensive
• Ground-truth path tracing is still not real-

time
• Instead...

• Do local illumination
• “Hack in” reflections, shadows, color-

bleed, ambient occlusion, etc

Light Sources

Intensity and direction of light sources
change what surfaces are affected

Local Shading: Notation

light intensity in, light intensity out
vector pointing to: light, normal direction, eye, reflection
direction

Note that light intensity is related to wavelength, but we
will treat intensity as a representation of RGB value

Phong Illumination

Emissive Term

Polygon has color:
• I is resulting intensity
• ke is emissivity

Often omitted as it’s generally for special-
purposes

I = ke

Ambient Term

Ignore camera and light direction
• Ia is ambient intensity
• ka is ambient reflection coefficient

I = kaIa

Lambertian surface – constant BRDF

Diffuse Term

I = kdIimax(L ⋅ N,0)

where n is specular coefficient

Looks like “highlight” that 
moves with light & eye

Specular Term

I = ksIimax(R ⋅ V,0)n

Specularity Coefficient
more specular

hi
gh

er
 e

xp
on

en
t

Phong Illumination Model

I = Ie + kaIa + ∑
lights i

Ii(kdmax(Li ⋅ N,0) + ksmax(Ri ⋅ V,0)n)

Can Phong do this?

Purely specular (mirrored) surface

How To Achieve Perfect Specularity?

1. Incoming ray hits purely specular
surface

2. Shoot secondary reflection ray
3. Set pixel color to color “seen” by

reflection ray

Reflection in Practice

Objects may not be perfectly mirrored
• blend reflected color with basic shading
Objects have base color
• multiplies reflected color

Dealing with Discrete Geometry

Flat shading: use normal per face

Very obvious discontinuities 
at edges

Only used for stylized “chunky” effect

Gouraud Interpolation

1. Compute color at vertices
2. Linearly interpolate over face

Color is continuous, but obvious artifacts
(nobody uses this anymore)

Phong Interpolation

• Linearly interpolate normals
• Renormalize normals(important)
• Compute color per pixel

Local vs Global Illumination Recap
Local:
• Shade each object based only on itself, the

eye, and the light sources

Global:
• Take all other objects in scene into account
• Use BRDFs and the rendering equation

Ray-tracing In Practice…
• Take other objects into account, without

full global illumination
• Common techniques exist for
• Shadows
• Reflections
• Refractions

• Can add effects using maps, targeted ray
casts, and pre-baked lighting

• Often combined with rasterization pipeline

