Viewing and Projections

What are Projections?

Classical Projections

Isometric

Elevation oblique

One-point perspective

Three-point perspective

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either:
- Converge at center of projection
- Are parallel
- Preserve lines but not angles

Remember Art Class?

Projection Taxonomy

Orthographic Projection

Projectors orthogonal to projection surface

Orthographic Uses

Preserves shape and measurements (great for CAD)

Need isometric to see what's hidden

Default Camera Projection

Orthographic is default

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{p}}=\mathrm{x} \\
& \mathrm{y}_{\mathrm{p}}=\mathrm{y} \\
& \mathrm{z}_{\mathrm{p}}=0 \\
& \mathrm{w}_{\mathrm{p}}=1
\end{aligned}
$$

$\mathbf{p}_{\mathrm{p}}=\mathbf{M p}$
$\mathbf{M}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Projecting onto a Screen

Define area of screen and clip coordinates

glOrtho(left,right,bottom, top, near,far)

Normalized Device Coordinates

Transformed clipped coordinates to normalized device coordinates (NDC) glortho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
$(-1,1,1)$

(coordinates outside NDC discarded)

Why Use NDC?

Provides a standard range for plotting onto a device/screen
"Screen space" coordinates that can then be transformed into device coordinates

Orthographic Eye to NDC

$$
\begin{array}{cccc}
{\left[\begin{array}{cccc}
\frac{2}{\text { right }- \text { left }} & 0 & 0 & 0 \\
0 & \frac{2}{\text { top }- \text { bottom }} & 0 & 0 \\
0 & 0 & \frac{2}{\text { far-near }} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{\text { left }+ \text { right }}{\text { right }- \text { left }} \\
0 & 1 & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
0 & 0 & -1 & -\frac{\text { far }+ \text { near }}{\text { far-near }} \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\text { NDC space flipped } \\
\text { N } & \\
\text { (left-handed coordinate system) }
\end{array}
$$

- Scale to have sides of length 2
- Move center to origin

Orthographic Eye to NDC

- Scaled to have sides of length 2
- Centered at origin
- NDC looks down +Z axis
$\left[\begin{array}{cccc}\frac{2}{\text { right-left }} & 0 & 0 & -\frac{\text { right + left }}{\text { right-left }} \\ 0 & \frac{2}{\text { top-bottom }} & 0 & -\frac{\text { top }+ \text { bottom }}{\text { top- bottom }} \\ 0 & 0 & \frac{2}{\text { near - far }} & -\frac{\text { far }+ \text { near }}{\text { far - near }} \\ 0 & 0 & 0 & 1\end{array}\right]$

Perspective Projection

- Converge at point along projection (vanishing point)
- Multiple vanishing points in multipoint perspective

Projective Space

- w provides extra dimension to ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinate space
- Acts as a scaling value to represent distance from projector
- Larger w values correspond to more distance from viewer

Simple Perspective

- Center of projection at origin
- z is projection plane

$$
x_{\mathrm{p}}=\frac{\boldsymbol{x}}{\boldsymbol{z} / \boldsymbol{d}} \quad y_{\mathrm{p}}=\frac{\boldsymbol{y}}{\boldsymbol{z} / \boldsymbol{d}} \quad z_{\mathrm{p}}=d
$$

Homogeneous Form

consider $\mathbf{M p}=\mathbf{p}$ ' where:

$$
\left[\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Apply perspective division (convert coordinate back to $\mathrm{w}=1$) to be NDC $p^{\prime}=(d x / z, d y / z, d, 1)$

Perspective Projection

glFrustum(left,right,bottom,top, near, far)

Projecting onto the Near Plane

Map eye space point ($\mathrm{X}_{\mathrm{e}}, \mathrm{y}_{\mathrm{e}}, \mathrm{z}_{\mathrm{e}}$) to near plane point ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{z}_{\mathrm{p}}$)

Perspective Normalization

Convert frustum into NDC coordinate system:
$[1, r]=[-1,1]$ $[b, t]=[-1,1]$ $[-n,-f]=[-1,1]$

Frustum is in right-handed coordinate system; NDC is in left-handed coordinate system

Clipping

Only 4th column known
Use w to determine z in NDC space (3rd column)

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{cccc}
: & . & . & : \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{e} \\
y_{e} \\
z_{e} \\
w_{e}
\end{array}\right] \quad z_{n d c}=\frac{z_{c}}{w_{c}}=\frac{\alpha z_{e}+\beta w_{e}}{-z_{e}}
$$

near plane is mapped to $z=-1$ far plane is mapped to $z=1$
sides are mapped to $x= \pm 1, y= \pm 1$

Solving for Alpha and Beta

$$
\begin{gathered}
z_{n d c}=\frac{z_{c}}{w_{c}}=\frac{\alpha z_{e}+\beta w_{e}}{-z_{e}} \\
\left(\mathrm{w}_{\mathrm{e}}=1 \mathrm{in} \mathrm{NDC}\right)
\end{gathered}
$$

Take ratio of near, far, and eye:

$$
\frac{z_{e}}{z_{n d c}}=\frac{-n}{-1}=\frac{-f}{1}
$$

$$
\frac{-\alpha n+\beta}{n}=-1 \quad \frac{-\alpha f+\beta}{f}=1
$$

Solving for Alpha and Beta

With a little algebra, we determine:

$$
\alpha=\frac{-(f+n)}{f-n}
$$

$$
\beta=\frac{-2 n f}{f-n}
$$

$$
\left[\begin{array}{cccc}
: & : & : & \vdots \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
$$

General Frustum Transform

Mapping x and y into NDC using triangle ratios from earlier to determine 1st and 2nd columns...

Final matrix:
$\left[\begin{array}{cccc}\frac{2 n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2 n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\ 0 & 0 & -1 & 0\end{array}\right]$

Symmetric Viewing Volume

When right $=$-left and top = -bottom:

$$
\begin{aligned}
& \mathrm{r}+\mathrm{I}=\mathbf{0} \\
& \mathrm{r}-\mathrm{I}=2 \mathrm{r} \\
& \mathrm{t}+\mathrm{b}=0 \\
& \mathrm{t}-\mathrm{b}=2 \mathrm{t}
\end{aligned} \quad\left(\begin{array}{cccc}
\frac{n}{r} & 0 & 0 & 0 \\
0 & \frac{n}{t} & 0 & 0 \\
0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Normalized Device Coordinates

Note:
X and Y map to screen width and height
Z used for depth (deeper points are higher)

Screen Coordinates

Screen coordinates use different system!

Handling Aspect Ratio

glViewPort(x, y, width, height) transforms NDC to window coordinates

Allows for an aspect ratio in final display to screen after being normalized

Incidentally (x, y) specifies the lower left corner of the viewport

Note about Deprecation

glOrtho and glFrustum are deprecated as of OpenGL 3.0

Replacements:
glm::glOrtho
glm::g|Frustum

Additional Reading

- http://www.songho.ca/opengl/ gl projectionmatrix.html
- https://www.scratchapixel.com/lessons/ 3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix

