
Assignment 4 Overview



MMD File Format



Collada File Format

Collada is open standard for 3D meshes 
and animations
• More flexible and accessible than MMD

Please feel free to create your own models 
and rigs if you are artistically inclined (or 
just really love Vocaloids)



Parsing Joints and Weights
Collada data loaded in via AnimationFileLoader

Scene contains a number of useful classes:
• Attribute (Mesh attribute information)
• MeshGeometry (Face and vertex information)
• Bone (Bone information)
• Mesh (Mesh and bone information)



Visualizing Bones
• Bones rendered via skeletonRenderPass
• Must add shader for highlighted bones (i.e. 

render a cylinder cage around the bone)
• Cylinders represented by two types of 

lattices:
1. Line segments following the length of the 

bone
2. “Circles” (really just n-gons) at the bone’s 

end and middle positions 



RenderPass

• Class for handling all the OpenGL setup/
boiler plate

• Provides abstracted container for 
working with VAOs, VBOs, programs, 
attributes, etc

• Not essential to understand but may be 
helpful



Bone Picking

How to select an object in 3D (world) 
space based on the mouse position in 
2D (screen) space?



Ray Casting

Generate a ray from screen space 
coordinates to world space 
(ScreenToWorld)

How to do this?



Camera Matrix

• Compute the NDC (normalized device 
coordinates) from the screen position

• Determine coordinates in world space 
based on camera position and 
orientation



GLM::Unproject

Same idea as reversing the camera matrix (i.e. 
using the inverse), but also handles NDC 
conversion out of projection space

Must create a ray based on this unprojected 
position in world space
• Subtract eye position
• Unproject two positions along z to find ray



Cylinder Intersection
Intersection must be within cylinder radius and height
Intersect with cylinder in one of three ways:

1. Intersect based on cylinder’s position in world 
coordinates (inefficient)

2. Intersect based on cylinder’s position in bone’s 
local coordinates (transform ray into this 
coordinate system)

3. Intersect based on 2D projection of cylinder 
(check if hit within radius then compute 
intersect points to check height)



Parametric Cylinder Intersection
A cylinder can be considered a 

sequence of disks
Equation for infinite unit cylinder 

along Z-axis:

Substitute parametric ray equation:

x2 + y2 − 1 = 0

(Ox + dxt)2 + (Oy + dyt)2 − 1 = 0



Parametric Cylinder Intersection

• Expand and solve for t as a quadratic equation
• Check for extent of finite cylinder based on 

height of bone
• Assumes ray intersect happening in cylinder’s 

local coordinate system

(Ox + dxt)2 + (Oy + dyt)2 − 1 = 0



Object Picking Using Pixel Color
Kind of a hack but a classic!

• Create a buffer (not seen by viewer) that 
renders all objects as different colors

• Map user’s screen selection to this 
buffer and check pixel’s color

http://www.lighthouse3d.com/tutorials/
opengl-selection-tutorial/

http://www.lighthouse3d.com/tutorials/opengl-selection-tutorial/
http://www.lighthouse3d.com/tutorials/opengl-selection-tutorial/


Bone Manipulation
GUI class handles keyboard and mouse 

callbacks

Mostly similar to what you did in Menger…

…except you’ll also need to update the bone 
in the deformed coordinate system (will 
want some additional handling in Mesh)



Linear Blend Skinning

Final step is to connect the vertices 
(stored in MeshGeometry) to the 
deformations being applied to the bones 
(stored in Bone)

Performed on the GPU in the vertex 
shader (sceneVSText)



MeshGeometry

Skin weight information stored in 
MeshGeometry

• skinIndex (index of influencing bone)
• skinWeight (weight of influencing 

bone)
• v0-v3 (position of mesh vertex in 

influencing bone’s coordinate system)



LBS Vertex Shader
All attributes you need are already being passed 

into sceneVSText
• Apply bone weight for all influencing bones 

(capped at 4) to adjust vertex’s position in 
world space

• Must use bone’s TR information and and local 
position information to get the vertex’s 
updated position

• Note: vertexPosition is a placeholder
• Won’t need it once LBS is applied



Additional Caveats
All join rotations are handled as quaternions!

• Must work in quaternions even if you are 
not apply DQBS

• Look over ThreeJS Quaternion library to 
see available functionality/built-in 
Euler conversions



Design Document
Start working on a design document that addresses where in the code 

base and how you will tackle A4:
• Summarize the skinning pipeline and identify where your changes 

will go
• Describe additional classes you might create
• Describe changes to existing classes that will be helpful
• List any shaders/shader functionality you need to create
• Make sure to clarify the math necessary (i.e. transforms and 

coordinate systems) for each of these features

We will peer review each other’s documents on Friday, so this exercise 
is both for your benefit and the benefit of your classmates!


