
CS354p Lab 2: Blueprint and Git

This lab is to help familiarize you and your group members with using Blueprint
event graphs and integrating UE5 and Git via Gitlab. If you have previous
experience with Git, a lot of this should be familiar, but what we are setting
up here will be foundational for all your remaining assignments and labs, so
please make sure you fully understand all the steps of this lab. Also, even
though you will ultimately share one repository for group assignments, please
make sure every teammate is fully completing all of these steps and individually
submitting the lab.

Getting Started

We are going to build upon Lab 1 for this assignment, so to get started, please
copy and paste the entire Lab 1 directory. We will not do a full rename,
since that is fairly involved. Instead, we will rename the folder containing
all of Lab 2 from “Lab1” to “Lab2.” Delete all the intermediate folders (Bi-
naries, DerivedDataCache, Intermediate, and Saved), and rename the .uproject
to Lab2.uproject. You may notice the module name inside Lab2.uproject is still
Lab1, but we’re going to leave that for now.

Double click on .uproject. It will ask you if you want to rebuild the project.
Once you say yes, the deleted files should be regenerated and the project should
open in UE5. You may want to click Tools -> Refresh Project to regener-
ate/update the .sln/.xcworkspace etc.

Using Blueprints and Event Graphs

We are now going to move functionality out of the Controller and to the Char-
acter. This may be helpful depending on how many characters you have, how
many character-specific controls you have, but in this case, we’re doing this to
see how to pull functionality out of the C++ and into the BP. First, we are
going to create Blueprint Implementable Events, which allow us to call events
in the BP Event Graph from our C++. To get started, create three functions
in Lab1Character.h (notice I haven’t bothered to rename the Character class to
Lab2Character): DashActivatedEvent, TouchHeldEvent, and TouchTappedE-
vent. These events will map to the events callbacks in Lab1PlayerController.
They should look something like this:
UFUNCTION(BlueprintImplementableEvent)

void DashActivatedEvent();

(But as we will see, we may want to include arguments on some of them
later). Compile your C++ changes via the UE editor. When you open your
BP TopDownCharacter file, you should now be able to add these three events
to your Event Graph by clicking Add -> Override Function as shown below:

1



Once they are added, to the event graph, add a Print node to their exec pin so
we can confirm they connected successfully. Before we can test this is working,
though, we need to add the calls to our new functions in the C++. To do this, we
want to connect them to the Lab1PlayerController so we can handle the Charac-
ter movements via Blueprint rather than in Lab1PlayerController. We will need
to drop in our functions in OnDashStarted, OnSetDestinationTriggered, and
OnSetDestinationReleased. Once these functions are connected, recompile
and confirm the print statements are appearing as expected.

Finally we need to move the movement functionality over from the existing
C++ to our Blueprint. There is some amount of system and math knowledge
we need to understand to make this work, but the final output will look like
this:

2



Make sure you comment out the equivalent code in the C++ and confirm
this code runs as expected. If it does, you’re now ready to get this code uploaded
to a git repository!

Using Git

If you do not have a GitLab, you should go ahead and create an account.
You will need to add an SSH key to your account, so depending on if you’ve
never done this before, you may first need to generate an ssh key. The process
for this depends on your setup, and Gitlab has all the details you need here:
https://gitlab.com/help/ssh/README. If you want to use Access Tokens and
HTTP access, you can do so, but you’ll need to go through those steps on your
own.

Once you have the necessary keys uploaded, create a new, empty repository
called CS354p Lab 2. You will now need to initialize git for your local project
then connect it to the remote project. Gitlab will have instructions for this, but
it is generally done as follows:
cd CS354p Lab2

git init

git remote add origin git@gitlab.com:username/cs354p-lab-2.git

Before you do the initial add/commit/push, though, we’ll create a .gitignore
file, and set up git LFS for the project.

3

https://gitlab.com/help/ssh/README


Git Ignore and Git LFS

A .gitignore includes a list of all files you do not want to push to the remote
repository. You can find numerous examples of how to create your .gitignore
file to work with UE5, but the basic idea is to ignore build-related directories,
and files that can be generated by UE5. For example, you do not need to in-
clude the CS354p Lab2.sln because you can regenerate it by right-clicking the
CS354p Lab2.uproject and selecting “Generate Visual Studio Project Files”
(similarly you do not need to include CS354p Lab2.xcodeproj if you are work-
ing on OSX). Other generated files including .sdf, .opensdf, .suo, .ipch, .db, and
.opendb (or their OSX/Linux equivalents) can be ignored as well. For an ex-
ample of ignorable files, you can look at this: https://github.com/samsheff/
UE4-Gitignore/blob/master/UE4.gitignore.

In terms of directories, you only need to include /Source, /Config, /Plugins
(if you have any), /Content, and any directory you want to include “source”
binaries such as .psd, .png, .fbx, etc. All other directories can safely be included
in your .gitignore file.

For Git LFS, download the Git extension here: https://git-lfs.github.
com/. Once this is installed, all you need to do is type:
git lfs install

And you’re ready to go. You should not need to install git lfs on the same
machine again, but remember that if you start working from a new machine,
you’ll want to run that command on that machine.

From the local git repository directory, you can now add binary files that
you do not want to check into your repo to be tracked by lfs using git lfs

track. The basic UE5 binaries you should track are .uasset and .umap. You
can confirm they are being tracked correctly in the .gitattributes files, which
should have been generated upon tracking a file type.

Connecting to Source Control

At this point git add . should successfully add all necessary files to staging,
but I always check using git status just to confirm. You can now create your
first commit message and push to the repository. If you never get around to
changing your git editor settings to Emacs but also hate VIM (or just hate both
VIM and Emacs), you can do what I do and add a -m to avoid the issue entirely:
git commit -m "Initial commit. No VIM for me, thanks."

git push -u origin main

This initial push will take some time if you included the starter content, but
it will be a good way to test that LFS is working!

Let’s now make sure we can commit assets directly from UE5. Within the
UE5 editor, go to Content-> TopDown-> Maps and add a Level file by right-
clicking and selecting “Level.” Give it a name or leave the default name — we’re
just making sure source control is working directly from the UE5 Editor. Right-

4

https://github.com/samsheff/UE4-Gitignore/blob/master/UE4.gitignore
https://github.com/samsheff/UE4-Gitignore/blob/master/UE4.gitignore
https://git-lfs.github.com/
https://git-lfs.github.com/


click this level file and select “Add to Source Control.” You will see something
like this pop up:

We will be using Git, so select Git then make sure the Git path is correct
as well as your username and e-mail. Once you confirm, you should be able to
right-click the level file again and select Source Control -> Mark for Add.
The source control icon will change from a question mark to a plus sign, and if
you run git status from the command line, you’ll see the file has been added.

Once you’ve completed these steps, double check that others can successfully
access your work. Add at least one team mate to each of your repositories. You
will now clone at least one team mate’s repository and open it in UE5 Editor
to double check that everything is working. Remember that you will need to
right-click the .uproject and build the Visual Studio files before running if the
.gitignore is working correctly.

Finally, decide on a branching scheme that will work best for your team
to coordinate. It can be as fine-grained as creating a new branch for every
ticket, or as coarse-grained as each team member having a branch that is then
merged into the main development branch. Have at least two of the team
members make some small change using this branching schema to each of your
repos and then push it to the repo. Once you have confirmed it is working,
include documentation for how team members are expected to contribute in the
README.

Debugging

Debugging can be especially challenging when working in a large scale system
like UE5. There is a lot of class complexity that can be confusing the work
with, and beyond that many things can go wrong outside of the code, such as
Blueprints needing variables reset or reattached, bad intermediate data in the
build system, etc. We have many tools for investigating beyond printing debug
messages to the screen. We’ll now try out several ways listed below. There is
no official turn-in for these, but please take some time to go through them, as
they will be extremely helpful as you begin work on Assignment 1.

5



Blueprint Debugger

Blueprint offers high-level debugging tools to see the flow of execution from
events and add some breakpoints during. In your main level, click on the
Blueprints tab along the top. Select “Open Level Blueprint.” Once you have
opened the Level’s event graph, click Add New -> Override Function -> Tick.
This will create an event node that is called every frame. Attach a Print String
node to the exec pin. When you compile and hit Play, you will notice a yellow
box appears around the event graph view. If you select a value in the “Debug
filter” drop down you will see an animated arrow flowing along the execution
path. This is useful for figuring out if code in Blueprint is being executing and
what the logical flow is.

Right-click the Print String node and add a Breakpoint. When you click
compile and hit play, you will see a red arrow above this function indicating the
execution has stopped here. You will also notice additional functionality along
the top for debugging support. This is a subset of the tools you have access to
using breakpoints in a traditional debugger.

6



Console Debugger

To access the console, hit tlide (˜) while in the UE4 Editor. This will open a
console command, which you can use to issue commands during runtime. This
is a very powerful tool that allows you to debug and test features while running
the game, as well as switching between features and modes. To see a full list
of commands type help into the console, which will open up a .html document
with a nicely formatted list of commands and arguments.

Visual Studio Breakpoints

To use breakpoints in VS, you must first ensure you are in DeveloperMode
running the 64-bit version. There should be similar settings for XCode, VSCode,
etc, but you will need to familiarize yourself with your particular IDE to find
out where those settings are if you are currently unsure.

If you click on the green arrow, it should launch a new instance of the UE5
Editor, but now if you press “Play” in the Editor, the executing code will hit
any breakpoints you’ve set in VS. Put at least one breakpoint in to check that
this is working (I’d recommend creating a constructor in ALab2GameMode similar
to what we did in Lab 1. Put in some sort of code just to have something to
look at). Try out the commands listed under “Debug” such as Step Into, Step
Over, etc.

7



Notice you can also inspect variables by hovering over them when the break-
point has stopped execution. You can also use the Autos and Locals windows
to see variables and their current values. Autos shows variables used on the
current and preceding lines, while Locals shows in-scope variables. You can also
see the Call Stack.

There are many, many other things you can do with breakpoints and debug-
ging in IDEs like Visual Studio, XCode, and VSCode, but these are the basics.
Breakpoints are a great resource when you know roughly where something is
going wrong, but you’re unsure what or how.

Note: Visual Studio Building and Cleaning

When you are convinced it’s Unreal’s fault and not your own, it may be time to
clean and rebuild the project. Cleaning removes intermediate files, which can
be extremely helpful – especially if you’re changing class headers a lot, fixing seg
faults, bad memory accesses, etc, and find your project in a broken state where
the code seems to be updated but you’re not seeing the changes and/or it’s still
crashing repeatedly on trying to open the project for very vague reasons in the
logs. Building in Visual Studio is the same as hitting Compile in UE5’s Editor.
It will not rebuild the lighting/geo/etc, but it may fix issues if you simply can’t
open UE5 Editor or the hot reloading is being janky.

Under the Build tab in your IDE, you will find options for building/cleaning
the solution as well as building/cleaning the project. Building/cleaning the
solution will rebuild everything including the UE5 engine project. Building
your Lab2 project will only affect your code’s object files. Try to use build and
clean on your project before building and cleaning the solution which will take
more time, but if you need to “nuke from orbit – it’s the only way to be sure,”
clean and build the entire solution.

8


