CS354p Lab 3: Creating World Interactions

This lab will focus on setting up a scene containing multiple objects and us-
ing events and delegates to facilitate communication and interactions between
them. You will also be setting up a project from the blank template to bet-
ter understand the “boilerplate” setup that should be done before all future
projects.

Getting Started

Upon launching UE5.2; create a Game Project then select “Blank” as a Tem-
plate. For Project Settings, set the project to be C++ based. You should
include Starter Content to simplify the scene creation, but if you feel comfort-
able working with UE4 lights and creating your own meshes, you do not need to
include it. Name the project “Lab3” and click “Create”. Go ahead and connect
this project to source control as you did for Lab 2 — you will be submitting
this lab (and all future labs) through GitLab, so make sure you have git-lfs
installed/a .gitignore/a .gitattributes etc.

Creating a Scene

Open the “Minimal Default” level under StarterContent->Maps and modify
to your liking. We’ll be creating our own actors to interact with in the scene, so
you can delete the furniture at this time if you’d like. I'd recommend keeping
the lighting setup and the Player Start actor at minimum. If you are interested
in learning the art/design side of Unreal, you are more than welcome to create
your own level from scratch. There are many good tutorials on how to do that,
but those go well beyond the scope of this class, so I won’t go into detail on
how to work with those aspects of Unreal.

Creating a Pawn with Actions

You will notice you have basic controls. If you look under Edit -> Project
Settings -> Maps and Modes, you’ll see the default Pawn is ADefaultPawn.
We will build our own Pawn in a similar way to what was built for you in
Lab 1, but this time, you’ll be making it from scratch. Our Pawn class, called
WorldPawn, will need a BoxComponent that will act as a basic hit box for your
Pawn’s interactions. It optionally will need a StaticMeshComponent and a
CameraComponent plus SpringArmComponent if you’d like to position the camera
such that your pawn is visible (not required but may be helpful). You are
encouraged to create these components in C++ then modify them via Blueprint.

This WorldPawn needs some basic player controls, and we are going to imple-
ment a slightly simplified way of connecting controls to a Pawn that bypasses
extending the PlayerController. Note that there’s no right or wrong way to
approach this — it just depends on the system you’re implementing. To get
started, we first need to add the “Enhanced Input” module to our included

PublicDependencyModuleNames in Lab3.Build.cs. This gives us access to
Enhanced Input functionality which UE5 assumes to be the preferred way of
handling player inputs.

Next, we will add WASD controls for movement plus an “Interact” button.
The button you choose is not important — typical choices would be Enter,
space bar, or E (really — just pick something), but we’ll need to create an
InputMappingContext and two Data Assets — Interact and Move — in our
Content as we did in Lab 1. Interact will stay the default bool as its Value
Type. Move needs a Value Type of Axis2D. This allows us to take in input
across two axes (in this case, forward/backward and left/right or along the X
and Y axes).

You now need to set your button inputs in the InputMappingContext. This
is a little more complex than last time, since we’ll be mapping WASD to Move.
This one input can handle all of these buttons, because it’s an Axis2D and takes
inputs as a range between -1.0 to 1.0. W and D will be positive, while S and A
will have one of their modifiers set to “Negate.” We also need to handle inputs
along separate axes (i.e. WS will be on the Y axis while AD will be on the X
axis) so add the “Swizzle Input Axis Values” Modifier to W and S. It will look
something like this:

Inherit Setting:

We can now create our UInputMappingContext and our UInputActions in
the C++4 WorldPawn directly rather than going through a Controller. It will

look very similar to what is in Lab 1 but now in the Pawn directly. Create two
events, MoveEvent and InteractEvent, that will be the callbacks when a Move
button or Interact button is pressed. You will need to add some functional-
ity to BeginPlay that handles the input through the default PlayerController
(as we are no longer extending a PlayerController to build it out there), and
bind our actions to callbacks in SetupPlayerInputComponent. Finally, include
the movement handling in the MoveEvent and some placeholder print in the
InteractEvent to ensure they’re both connected.

Make sure you add the InputMappingContext, and the Move and Interact
inputs to your Blueprinted Pawn then set the Default Pawn in Lab3GameMode
class, which inherits from AGameModeBase. You will also need to update:
Project Settings -> Project -> Maps & Modes -> Default GameMode to
match your custom GameMode rather than using the Default. If everything
is working, you should be able to move the Pawn (in a character relative way, so
it may be a bit awkward depending on your character and camera orientation)
and see a print statement on the screen when you press Interact.

I’ve uploaded the code for WorldPawn, Lab3GameModeBase, and the Lab3
build to Canvas for reference to help with setup, but please try to write the
code yourself rather than copy and pasting! It’s critical that you understand
all the lines of code we’ve written even if you're referencing a working solution
while doing so.

Creating a Collision Actor

This task should also look pretty familiar after Lab 1. Create your own C++
class , called CollisionActor that inherits from AActor. Like the Actor you
created for Labl, the CollisionActor will have both a StaticMeshComponent
and a SphereComponent to allow for interactions. Once you have the basic
constructor in place, go ahead and create a Blueprint version of this Actor called
BP_CollisionActor and place it under Content in your Blueprints folder. You
can set the mesh and the size of the collision volume in the Blueprint. Make the
collision volume larger than the mesh so objects can enter the collision volume
without colliding with the mesh. The mesh should Block on collision, and the
collision volume should Overlap. This time, though, we will check for overlaps
on the Pawn itself, so you don’t need to bind it to OnComponentBeginQOverlap.

Creating a Pawn-Actor Interactions

Now that you have a Pawn with an Interact button, and an object to interact
with, you will implement the Interact functionality that runs when the pawn is
overlapping with the CollisionActor. In your function, InteractEvent, you
will now check for overlapping Actors every time the player presses the Interact
button and handle the interaction based on the type of Actor. To do this, access
the Pawn’s hit box’s GetOverlappingActors function. All Primitive Compo-
nents have this function and one to check overlapping Components, but we’re

going to check by Actor since we have not created multiple types of Compo-
nents yet. If we wanted more granularity (for example, implementing hit boxes
versus hurt boxes in a fighting game), we’d check GetOverlappingComponents
but checking by Actor is fine for our purposes here.

Store all the overlapping Actors in a TArray and loop over them. If the Actor
is of the CollisionActor type, go ahead and destroy that CollisionActor.
This process will look something like this:

TArray< AActor *>0OverlappingActors;
HitboxComponent->GetOverlappingActors (OverlappingActors) ;

for (AActor * actor : OverlappingActors)
{
if (actor->IsA(ACollisionActor::StaticClass())) { }

}
Remember that you’ll need an additional include to access CollisionActor
information.

Creating a Trigger Delegate

For this next type of interactive Actor, we're going to use UE4’s C++ based Del-
egates. Start by creating a C++ class called TriggerActor that inherits from
AActor. Give it the a StaticMeshComponent and a SphereComponent like you
did for the CollisionActor and create a Blueprint version, TriggerActorBP
as well. If you are thinking ”should these classes inherit from a shared parent
class since they’re mostly the same?” that is a good observation, but a more
involved architecture isn’t necessary for such a small testbed project, so you do
not have to worry about the software architecture quite yet.

Next create another Actor, ResponseActor, that has a StaticMeshComponent.
This Actor doesn’t need a hitbox, because Interacting with a TriggerActor will
affect the associated ResponseActors. To do this, start by adding a Dynamic
Multicast Delegate to TriggerActor with the macro:

DECLARE DYNAMIC_MULTICAST DELEGATE (FTriggerDelegate) ;

before the class declaration in TriggerActor.h. You are creating your own
Delegate called FTriggerDelegate, which is not necessarily the best name, but
it’ll be fine in this case. Somewhere in public go ahead and create an instance
of this delegate:

FTriggerDelegate OnTriggerDelegate;

That’s it for TriggerActor. Next, add functionality to your WorldPawn so
that when the Pawn interacts with a TriggerActor, it will call FTriggerDelegate.
You must access the delegate itself via the TriggerActor instance it belongs to.
Once you do, the delegate will have a Broadcast() function it can call. You
can safely call this without having a listener bound to it, because this assumes
a multicast model rather than a one-to-one communication.

To finish the delegate’s communication, you now need to bind this delegate to
a response function. This response function will be in ResponseActor, and you
should use the UFUNCTION specifier when declaring it, so it’ll be recognized by
the UE4 system. Dynamically bind this function in BeginPlay as you have done

in Lab 1, but you’ll notice you need a pointer to the TriggerActor instance, so
it can properly associate the calling delegate instance with the receiving object
instance.

To make this work in a relatively flexible way, you’ll add a pointer in
ResponseActor to a TriggerActor. Give this a UPROPERTY specifier that in-
cludes “BlueprintReadWrite” and “EditAnywhere.” We do not need to initialize
this TriggerActor in the constructor — we’ll connect it via the ResponseActorBP
in the level itself. Once you drop a ResponseActorBP into the scene, you can
set its TriggerActor pointer to a TriggerActor also in the scene. Note that
this is per instance not at the class level! This provides a way to easily assign
and reassign the delegate interactions, but note (as always) that if you call on
functionality from a pointer that may be null, you should always check that the
pointer exists before accessing it!

Assuming this works and doesn’t crash (if it does, check that you included
the correct specifiers etc), have the ResponseActorBP change its location in
the scene when the delegate is called (or, more advanced, use a Timeline if
you're feeling fancy and want proper interpolation). Try it out with multiple
ResponseActorBPs and multiple TriggerActors. After you're satisfied, collect
some video footage, screenshot exciting parts of your code, and submit these
files plus the project code via your GitLab account. Link to this repository as
your Canvas submission.

