
CS354p Lab 4: Building a Player Class

This lab will focus on creating a playable character using the Character class
provided by UE5. You will also explore the concepts of player state and sepa-
rating input handling from the playable character.

Getting Started (to complete before class)

Upon launching the current version of UE5, create a Game Project then select
“Blank” as a Template. For Project Settings, set the project to be C++ based.
You do not need to include Starter Content as we will not be creating interacta-
bles in the scene, so the basic level and lighting setup will be sufficient for us.
Name the project “Lab4” and click “Create Project”. Connect this project to
source control (using git ignore and git lfs).

Take the provided base map and modify to your liking (one big plane is
perfectly fine for what this lab requires) then save it into a folder you create
called “Maps” in the Content folder. You don’t need to worry about lighting
etc — so long as there is some basic geometry to move along, enough lighting
to see, and a Player Start actor in the scene, you are good.

Creating a Character (to complete before class)

For the next step, you will create Lab4Character, which will inherit from
ACharacter not APawn. This is very important. The Character class has a
bunch of additional functionality that Pawn does not include including access to
the CharacterMovementComponent, which we are not modifying at this time,
but we will be using to add in jump functionality.

Since we’ll be in first-person view mode for this project, you don’t need
to add any geometry to Lab4Character, but you will need to add basic input
handling (e.g. modify the Lab3.Build.cs to include EnhancedInput and add the
InputMappingContext and the 3 forms of input). Please include WASD controls
for movement (WS will be move forward and backward, and AD will be strafe
left and right), Interactions mapped to E, and Jump mapped to space bar.

You can go ahead and make some of the necessary functionality as you’ve
done before such as:

• Create BlueprintImplementableEvents as you’ve done in previous labs to
handle input on the BP side of things (i.e. MoveEvent, JumpEvent, and
InteractEvent)

• Create your BP Lab4Character file in a folder you create called “Blueprints”
under Content

• Modify both the Lab4GameModeBase.cpp to set the DefaultPawn to
Lab4CharacterBP and update Project Settings -> Project -> Maps

& Modes -> Default GameMode to match your custom GameMode rather
than using the Default.

1



At this point we will completely diverge from the previous labs so
stop copying-and-pasting!

Creating a Player Controller

We are now going to explicitly create our own Player Controller rather than
relying on the default interface via our Pawn/Character class. While for many
games, accessing the inputs directly from the Playable Character is fine, as
soon as we introduce any complexity (e.g. networking, dynamically swapping
between characters, a large roster of characters with asymmetric controls, etc),
treating the controller (e.g. the interface for the player into the game) as a
separate abstraction from a character (e.g. an object the player controls) greatly
benefits us (and may be essential in the case of certain networking scenarios).

To do this, we first need to create a custom Lab4PlayerController, which
inherits from PlayerController. Create a constructor method for this class as
well as a protected override of the virtual functions BeginPlay() and SetupInputComponent().
You can go ahead and create some private functions as well, which you’ll bind
the axis/actions to, and properties that will map to the InputMappingContext
and Inputs from the PlayerController Blueprint we’ll eventually use. Make sure
to give these properties the correct specifiers to be accessible. Something like
this:

UPROPERTY(EditAnywhere, BlueprintReadOnly, Category=Input,

meta=(AllowPrivateAccess = "true"))

Note that we’re not calling on the BlueprintImplementableEvents directly
from the Controller. Instead we’ll bind the inputs to the functions in
Lab4PlayerController then call Character’s BlueprintImplementableEvents to
handle them in the BP.

You’ll need to include InputActionValue.h, EnhancedInputComponent.h
and EnhancedInputSubsystems.h in Lab4PlayerController and then you’ll
be ready to update the functionality of your Controller. First add the Input
Mapping Context at runtime within BeginPlay (this will look the same as it
was in Lab1).

SetupInputComponent() will look something like this:
Super::SetupInputComponent();

if (UEnhancedInputComponent* EnhancedInputComponent

= CastChecked<UEnhancedInputComponent>(InputComponent)) {
EnhancedInputComponent->BindAction(MoveAction, ETriggerEvent::Triggered,

this, &ALab4PlayerController::OnMovePressed); ... }

And in a separate function, OnMovePressed(const FInputActionValue&

Value) it will look like this:
FVector2D MovementVector = Value.Get<FVector2D>(); ALab4Character *

character = Cast<ALab4Character>(this->GetCharacter());

if (character)

{

2



character->MoveEvent(MovementVector);

}
Where MoveEvent is the BlueprintImplementableEvent called from the Char-

acter itself. Notice how I’m passing in the Movement inputs to the character
event. This allows us to handle it from Blueprint if we so desire it.

At this point, you may be thinking “why all this overhead for something
I could do in one class just as easily?” but again — the point is to see an
architecture that more gracefully handles increasing amounts of complexity.

Interlude: Some Non-Trivial Scenarios

Imagine we have multiple playable characters the player can swap between in
a puzzle game (e.g. Lost Vikings, Trine, etc). In this case, the same buttons
on the controller may match to a completely different move on the charac-
ter. An inheritance-style structure won’t necessarily solve this problem, but a
component-based approach allows us to change things quickly and efficiently in
one location.

Now think about games with DLC characters. The separation of the con-
troller for the character will speed up the process of building these characters,
and will allow devs to make big changes in the design of the character controls
without breaking already existing characters.

Finally, think about networked games where you can respawn and/or change
characters. Having a Player Controller that is associated with one player through-
out the game versus a bunch of Pawns that are continually spawned and de-
stroyed helps with managing state.

And Back to Coding...

Once you have hooks in Lab4PlayerController connecting the input bindings
to the BlueprintImplementable calls in Lab4Character, create a Blueprint of
your Lab4 PlayerController if you’d like to expose the Inputs to the GUI (which
we’ll want to do) then add this line to your GameMode, so that the default
Player Controller is updated to yours:

static ConstructorHelpers::FClassFinder<APlayerController>

PlayerControllerBPClass(TEXT("/Game/Blueprints/BP Lab4PlayerController"));

if(PlayerControllerBPClass.Class)

{
PlayerControllerClass = PlayerControllerBPClass.Class;

}
Make sure you connect your Inputs and InputMappingContext via the

BP Lab4PlayerController. At this time you should be able to access player
inputs within BP Lab4Character’s Event Graph. You can create move and
jump functionality directly via Blueprint using AddMovementInput and Jump

then confirm the Character successfully moves in editor.

3



Working with Character State

We are now going to introduce the idea of action states to our Lab4Character
class. Eventually you may want to create an entire Finite-State-Machine com-
ponent to connect to your Character, but for now, we’ll keep the functionality
within Lab4Character itself. We’ll do so using a UENUM:
ECharacterActionStateEnum

This enum will be of type uint8 so it is accessible via Blueprints and should
have the macro UENUM(BlueprintType). It will look something like this:

To create our very basic FSM functionality, we need to keep track of the
state: ECharacterActionStateEnum CharacterActionState and we need at
least two functions: CanPerformAction(ECharacterActionStateEnum updatedAction)

and UpdateActionState(ECharacterActionStateEnum newAction). These func-
tions should be BlueprintCallable so that we can check if an updated action is
allowed before performing the action and updating the current action state to
our new action. This flow of actions can be laid out in BP, but the actual
functions that determine the logic should be in C++.

The logic to implement is as follows:

• All actions are available from Idle

• Player cannot Interact while in Jump or Move states

• Player cannot perform any other action while in Interact

• An interaction takes n seconds (by default n = 3) to complete, at which
point the player returns automatically to Idle

• Once the player jumps, they remain in the Jump state until they land
(touching the ground triggers the Character’s OnLanded Event), at which
point the player returns automatically to Idle

• The difference between Idle and Move states are the player’s current ve-
locity (accessible in Character via GetVelocity())

As you’re implementing all of this logic in the Lab4Character class, please
include a couple print-to-screen calls when interactions begin and end, so we
can verify that’s working without implementing a full interaction system.

4



Also note that you’ll probably want to put some logic on Tick to check for
changes in character velocity (i.e. returning to Idle). We could put this logic
onto an event to avoid bogging down Tick (and this is ideal in practice), but
it requires overriding the UCharacterMovementComponent, so we’ll skip that
rabbit hole for the sake of brevity...

Submission

After you’re satisfied, collect some video footage showing the system in action.
Include some print statements to screen when an action is not allowed, so the
TA can verify actions are available (and unavailable) when expected. Also
screenshot exciting parts of your code, and submit these files plus the project
code via your GitLab account and include a link to your video via Youtube.
Link your repository as your Canvas submission.

5


