
CS354p Lab 7: Networking

This lab will explore the basics of working with network functionality in Unreal
and understanding the principles of using replicated variables and RPCs. You
will create a thrilling multiplayer game built around random counting. While
not exactly “game of the year” material, this will give you an idea of how to get
started on networking!

Getting Started (Complete Before Class)

Create a new project named Lab7 from a blank template building on C++. You
can choose whether or not to include starter content. Go ahead and include the
Mannequin assets in your Content folder, so you can see the other player char-
acters more clearly. Set up a map with at least three Player Starts positioned
to face each other. You may want to put some assets in the scene to make it
easier to discern where the specific players are spawning.

Create a C++ subclass that inherits from ACharacter called Lab7Character.
We only need to add WASD controls to this character, so you can attach the in-
put bindings in Lab7Character, or you can create a APlayerController called
Lab7PlayerController if you want to be more “correct.” Either way, create a
BP of your Lab7Character called Lab7CharacterBP, and add a Mannequin to
the skeletal mesh. Set this to be the default pawn to spawn into the scene via
your Lab7GameModeBase.

Make sure everything compiles and that’s it! We’ll be adding any additional
functionality during the lab.

Testing Networking in the Editor (Complete Before Class)

For the sake of simplicity, we are only going to test the networking locally in
Editor. In practice, this is no substitute for testing across a network, but it will
be sufficient for the minimum networking specification of the current assignment.
For testing purposes, we’ll switch Play Mode to “Standalone Game.” This will
ideally have slightly fewer quirks than playing in “Selected Viewport.” You can
set the number of players you want to simulate under Multiplayer Options →
Number of Players. You will also want to set the Net Mode to “Play as Listen
Server” since we’re assuming the game’s host will also be a player.

1



Creating a Replicated Variable

We will now add a replicated variable to the Lab7Character class. The first
thing we’ll want to do is add the include:

#include "Net/UnrealNetwork.h"

This will allow us to access the networking features.
For the sake of demonstrating functionality, we will need to add both a

Count integer and a UTextRenderComponent to display our current “score.”
Count will be replicated using RepNotify, which means when the variable’s
value changes, this change will be replicated to all other clients. We will give
Count a UPROPERTY macro that looks like this:

UPROPERTY(ReplicatedUsing = OnRep Count)

int32 Count;

To ensure this variable is replicated, we need to add it to our override of
GetLifetimeReplicatedProps. This function will look something like this:

We now need to make this OnRep Count function, and we’ll want to cre-
ate some function that will be executed when OnRep Count is called on the
client. We’ll call this function DisplayCount since that’s what we’ll do when
Count is incremented. DisplayCount will update a Text Render Component to
display a local (unreplicated) GUI showing the other players’ scores. We will

2



create a UTextRenderComponent called CountText and then attach this com-
ponent to our Lab7Character in the Lab7Character’s constructor using the
usual CreateDefaultSubobject function. Once you’ve successfully attached
this component, go to Lab7CharacterBP and make sure the text is displaying
in a nice, visible location.

Calling RepNotifies

We now need a way to increment Count so we can test its replication. For the
sake of simplicity, we’ll do this by having each Playable Character call a function
IncrementScore on a time set to a random timer length. Don’t make the timer
length too short, or it will be hard to monitor all your network activity, but also
don’t make it too long, or you’ll have to wait. Probably 3-5 seconds is a good
first guess.

The function IncrementScore will increment Count, call DisplayCount lo-
cally to update this Character’s score, and then again call IncrementScore on a
timer. Note, we don’t want this timer to be repeating, since we want its time to
be randomized between calls. When Count is incremented in IncrementScore,
it will call OnRep Count on the other clients, so we should have OnRep Count

call the function DisplayCount as well. This should let all the other players see
each others’ scores.

At this point, when you test your code, you should see each Playable Char-
acter with their score displayed above their head (or where ever you put your
Text Render Component).

Calling RPCs

The next step is to make some “win condition” that is verified on the server,
and which updates the state for the clients. To do this, we’re going to cre-
ate a couple functions. Server DeclareWinner() will have the specifier macro:
UFUNCTION(Server, Reliable, WithValidation), and this fucntion will re-
quire Implementation and Validate thunks. This function will be called when
a Playable Character’s Count reaches 10 or higher. For the sake of simplicity
(and cruel irony), winning the game makes you leave it...i.e. we’ll Destroy the
Lab7Character that won the game, while the others keep counting.

This is not very interesting behavior, but to do more exciting things to
our Lab7Characters, we’ll probably need to access the PlayerArray in the
GameState class. You are welcome to try out something fancier (and certainly
such experimentation will only help on the networking assignment), but we’ll
be coming back to GameState soon if you are unsure how to use it.

Since we’re Destroying the Lab7Character through the server, this destruc-
tion needs to be replicated to the clients. If you’d like to play around with some
of the other features of networking, you can try adding some of these calls:

• A HasAuthority() boolean to select functionality based on whether the
code is currently executing on the server or a client

3



• A NetMulticast() to execute code both on the server and all the clients

While our current lab is a bit too trivial to need these, you can add On
Screen Debug Message to get an idea of what’s happening where when you call
these.

Submission

After you’re satisfied, collect some video footage showing the system in action.
Also screenshot exciting parts of your code, and submit these files plus the
project code via your GitLab account and include a link to your video via
Youtube. Link your repository as your Canvas submission.

4


