
COMPONENT-ORIENTED
PROGRAMMING

CS354P

DR SARAH ABRAHAM

CS354P

PROBLEMS WITH INHERITANCE

▸ Many complaints about OOP revolve around inheritance
and its hierarchies

▸ Inflexible

▸ Hard to maintain

▸ Hard to understand

▸ Causes the very problems it’s trying to solve

CS354P

EXAMPLE: MONOLITHIC CLASS HIERARCHIES

‣ Very intuitive for
small simple cases

‣ Tend to grow ever
wider and deeper

‣ Virtually all classes
in the game inherit
from a common
base class

Part of object class hierarchy from
Unreal Tournament 2004

Actor

Brush

Controller

Info

Pawn

Vehicle

UnrealPawn

RedeemerWarhead

Scout

AIController

PlayerController

GameInfo

…

…

…

…

Light

Inventory

HUD

Pickup

Ammo

ArmorPickup

WeaponPickup

Ammunition

Powerups

Weapon

…

…

…

…

CS354P

WHAT MONOLITHIC GIVES US

▸ Inheriting from a single base class works well with dynamic
programming and systems

▸ One place to implement all the features (reflection,
serialization, garbage collection, etc) that we may want

▸ Allows the creation of a natural taxonomy of objects

▸ Forms a directed acyclic graph of functionality

▸ Easy to reason about in many cases

CS354P

Vehicle

PROBLEMS WITH MONOLITHIC HIERARCHIES

‣ Hard to understand, maintain, and modify classes

‣ Need to understand a lot of parent classes

‣ Hard to describe multidimensional taxonomies

‣ e.g. How would you include an amphibious vehicle?

LandVehicle

Car Motorcycle Truck

WaterVehicle

Yacht Sailboat Cruiser

CS354P

USE MULTIPLE INHERITANCE?
‣ NOOOO!!!!!

‣ There’s a reason languages like Java don’t have it

‣ Derived classes often end up with multiple copies of base
class members

‣ Compiler cannot resolve ambiguities
Vehicle

LandVehicle

AmphibiousVehicle

WaterVehicle

CS354P

MULTIPLE INHERITANCE

class Foo: Bar {

public:

 Foo();

};

▸ C++ allows multiple inheritance

▸ Can seem quite convenient if
existing taxonomy doesn’t quite
work in a particular case

▸ Problems arise since the constructor
for the superclass is called when
creating a derived class

class Bar {

public:

 Bar();

};
When Foo() is called, copy of Bar created then copy of Foo

CS354P

SO WHAT HAPPENS WHEN WE CONSTRUCT FOO NOW?

class Bar {

public:

 Bar();

};

class Foo: Bar, Baz {

public:

 Foo();

};

class Baz: Bar {

public:

 Baz();

};

1) Bar constructor called

2) Bar constructor called

3) Baz constructor called

4) Foo constructor called

CS354P

THE DEADLY DIAMOND PROBLEM

▸ Two copies of all of Bar’s members

▸ Bar::Foo::function()

▸ Bar::Baz::Foo::function()

▸ Compiler ambiguities if Bar and Baz implement the same
function

▸ Call on Bar::Foo::function() or Bar::Baz::Foo::function()?

▸ Results in a compiler error

CS354P

SOLVE WITH VIRTUAL INHERITANCE?

▸ Common C++ wisdom is use of virtual inheritance (i.e.
virtual base classes) to prevent multiple copies

▸ Sure, but better idea: don’t use multiple inheritance

▸ Assumptions about the hierarchical taxonomy may be
flawed and need redesign

▸ Not every object fits within a monolithic hierarchical
taxonomy

CS354P

INTERFACES AND MIX-INS IN OOP

▸ Interfaces are an abstract type that does not contain data but does
contain method signatures

▸ Mix-ins are classes that contain functions which are useable by other
classes that do not inherit from the mix-in class

▸ These paradigms allow for single-inheritance languages to express
multiple types of functionality without multiple inheritance issues

▸ High-level concepts -- actual implementation will be language-specific

▸ C++ does not natively support either of these

▸ Create interfaces using pure virtual functions

▸ Create mix-ins using...multiple inheritance...

CS354P

MIX-IN EXAMPLE

Drawable

(renderable model)

Simulated

(rigid body model)

Trigger

(volume)

GameObject

(transform, refcount)

AnimatedMixin

(animation controller)

Animated

AnimatedWithPhysics

CS354P

MOVING BEYOND TAXONOMIES

▸ Classical inheritance is an “is-a” relationship

▸ e.g. What are the defining features of an object’s existence?

▸ Allows for deep and complex taxonomy of objects

▸ Also possible to treat objects as a collection of other objects

▸ Creates a “has-a” relationship

▸ e.g. What is the functionality of the objects that an object
possesses?

▸ Allows for the deep and complex composition of objects

CS354P

COMPOSITION

▸ Object contains subobjects that implement desired
functionality

▸ Composition: object can own the subobject (i.e. subobjects
share main object’s life cycle)

▸ Aggregation: object contains the subobject (i.e. subobject
does not share main object’s life cycle)

▸ High level principle of how and when to split functionality

▸ Can be implemented using interfaces, mix-ins, delegates, etc

CS354P

COMPONENTS

‣ One “hub” object contains pointers to instances of various
service class instances as needed (e.g. composition).

GameObject

Transform

AnimationController

MeshInstance

RigidBody

Note: Filled diamond indicates composition; unfilled diamond indicates aggregation

CS354P

USING COMPOSITION

‣ “Hub” class owns its components and manages their lifetimes (i.e.
creates and destroys them)

‣ Naive component creation:

‣ The GameObject class has pointers to all possible components,
initialized to NULL

‣ Only creates needed components for a given derived class

‣ Destructor cleans up all possible components for convenience

‣ All optional add-on features for derived classes are in component
classes

CS354P

MORE FLEXIBLE (AND COMPLEX) ALTERNATIVE

‣ Root GameObject contains
a list of generic
components

‣ Derive specific
components from the
component base class

‣ Allows arbitrary number of
instances and types of
components

GameObject

Transform

RigidBody

AnimationController

MeshInstance

Component

+GetType()

+isType()

+ReceiveEvent()

+Update()

CS354P

EXAMPLE: UE4 AND UACTORCOMPONENTS
Creates new subobject associated with BP

Subobject inherited from C++ parent class

CS354P

THINKING ABOUT OOP, COMPONENTS, AND INHERITANCE

▸ Consider the principles of OOP we discussed last time

▸ Encapsulation

▸ Abstraction

▸ Inheritance

▸ Polymorphism

▸ How useful are these in practice?

▸ What are the trade offs in large systems like a game engine?

▸ How well do the ideas of inheritance and components help or hinder these
concepts?

▸ Are there other concepts we should be considering in game development?

