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HISTORY OF UNREAL ENGINE

▸ Engine development of Unreal Engine began in 1995 

▸ Unreal (game) released in 1998 

▸ Unreal (engine) mostly written by Tim Sweeney (founder of 
Epic Games) 

▸ Include features such as collision handling, lighting, 
advanced texturing, bundled map editor, scripting 
language, networking support
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UNREAL ENGINE 2 AND 3
▸ Unreal Engine 2 development began in 1999 

▸ First game released in 2002 

▸ Improved rendering, and tools pipeline 

▸ Additional features included physics, particle systems, cinematic editing 
systems, character animation systems 

▸ Unreal Engine 3 development started in 2002 

▸ First games released in 2006 

▸ Engine added support for programmable shader pipeline, and improved 
physics, graphics, sound, and tools pipeline 

▸ Additional features included destructible environments, soft-body physics, 
crowd simulation, global illumination,  and multi-platform build targeting



CS354P

UNREAL ENGINE 4
▸ Development began in 2003 

▸ Primarily written by Tim Sweeney in parallel with development of UE3 
by the full development team 

▸ First game, Daylight, released in 2014 

▸ Engine released in 2014 under a subscription model 

▸ In 2015 this changed to a pure royalties model 

▸ Intended to simplify the scripting systems of previous engine versions and 
support better global illumination models 

▸ Major reworks to networking code before the release of Fortnite 
(allowing more connections with high bandwidth/largescale rendering)



CS354P

▸ Networked shooter roots 

▸ Traces of arena-based shooters visible in the underlying class structures 

▸ Design philosophy built to support this with extensions/modifications to 
support other genres 

▸ Graphics and networking are “first class” features 

▸ Highly optimized in both software and hardware support 

▸ Well-supported pipeline 

▸ Designed to integrate the most modern research possible 

▸ Professional development supported over hobbyist development 

▸ Yes, Blueprints is intended to bridge this gap 

▸ But system fundamentally assumes large teams and expert systems users

WHAT DOES THIS MEAN FOR THE ENGINE?
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WORKING WITH MODULES

▸ Games, programs, and the UE5 editor itself are all targets 
built by the UnrealBuildTool 

▸ Compiled from C++ modules, or areas of functionality 

▸ Build rules allow modules to interact 

▸ C# scripts determine build rules and included modules 

▸ These are the .cs files generated within the Source folder
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MAJOR MODULE CATEGORIES
▸ Runtime 

▸ Features for efficiently creating and running a game 

▸ Basis of gameplay programming (our primary focus in this class) 

▸ Editor 

▸ Features for working within the Editor or building out Editor tools 

▸ Underlying systems that support gameplay programming 

▸ Developer 

▸ Features related to outside assets and tools that may require interfacing or modification 

▸ Assists with asset management, testing suites, profiling and other features not within the 
editor 

▸ Plugins 

▸ Features useful for runtime, editor, or developer, but are not within these three categories 

▸ Added as benefits the project
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RUNTIME

▸ Core provides common framework for UE5 modules to 
communicate as well as math and container libraries and 
hardware support 

▸ CoreUObject defines UObject type allowing for reflection, 
garbage collection, and serialization within the runtime system 

▸ Engine contains game functionality and types that support it, 
such as Actors, Components, and Gameplay 

▸ Other modules supported include advertising, analytics, AR/VR, 
networking, physics, rendering, AI, GUI, audio, file parsing, etc...
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EDITOR

▸ Kismet provides Blueprint editor functionality and is supported 
by KismetCompiler and KismetWidget 

▸ LevelEditor contains level editing functionality and viewing 
tools 

▸ PropertyEditor contains functionality for displaying and editing 
UProperties 

▸ Other modules include support for landscape painting, mesh 
editing, animations, AI, inputs, level streaming, light building, 
and basically anything else that involves the Editor
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DEVELOPER

▸ AutomationController and AutomationWindow used to 
connect to automation system 

▸ OutputLog, GameplayDebugger, and Profiler (among many 
others) provide debug information and profiling tools 

▸ DeviceManager provides interface for interacting with 
connected devices 

▸ Other modules include support for mesh and texture handling, 
build systems, deployment, audio tools and anything else related 
to the tools pipeline and not the editor or gameplay directly
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PLUGINS

▸ Paper2D, Paper2DEditor, PaperSpriteSheetImporter, and 
PaperTiledImporter provide sprite and flip-book (e.g. sprite 
animation) support as well as sprite-based collision and sprite 
importing 

▸ PhysXVehicles and PhysXVehiclesEditor provide support for 
creating vehicle physics 

▸ SteamVR and SteamVREditor provide support for Steam VR 
services 

▸ Other modules include any potentially useful, but specialized, 
functionality related to gameplay, editor or developer categories
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RUNTIME MODULES

▸ Main focus of this class! 

▸ Other categories are incredibly important but game 
engines are just too vast to explore in a single semester 

▸ Gameplay programming is likely the most familiar and 
most accessible aspect of all this
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CODE EXAMPLE: GAMEMODEBASE
/**
 * The GameModeBase defines the game being played. It governs the game rules, scoring, what 
actors
 * are allowed to exist in this game type, and who may enter the game.
 *
 * It is only instanced on the server and will never exist on the client. 
 *
 * A GameModeBase actor is instantiated when the level is initialized for gameplay in
 * C++ UGameEngine::LoadMap().  
 * 
 * The class of this GameMode actor is determined by (in order) either the URL ?game=xxx, 
 * the GameMode Override value set in the World Settings, or the DefaultGameMode entry set 
 * in the game's Project Settings.
 *
 * @see https://docs.unrealengine.com/latest/INT/Gameplay/Framework/GameMode/index.html
 */
UCLASS(config = Game, notplaceable, BlueprintType, Blueprintable, Transient, hideCategories = 
(Info, Rendering, MovementReplication, Replication, Actor), meta = (ShortTooltip = "Game Mode 
Base defines the game being played, its rules, scoring, and other facets of the game type."))

class ENGINE_API AGameModeBase : public AInfo
{

GENERATED_UCLASS_BODY()

*AInfo is a Actor base class that does not need physical representation in the world (e.g. a manager)

https://docs.unrealengine.com/latest/INT/Gameplay/Framework/GameMode/index.html
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GAMEMODEBASE CONSTRUCTOR
AGameModeBase::AGameModeBase(const FObjectInitializer& ObjectInitializer)
: Super(ObjectInitializer.DoNotCreateDefaultSubobject(TEXT("Sprite")))
{
  bNetLoadOnClient = false;
  bPauseable = true;
  bStartPlayersAsSpectators = false;

  DefaultPawnClass = ADefaultPawn::StaticClass();
  PlayerControllerClass = APlayerController::StaticClass();
  PlayerStateClass = APlayerState::StaticClass();
  GameStateClass = AGameStateBase::StaticClass();
  HUDClass = AHUD::StaticClass();
  GameSessionClass = AGameSession::StaticClass();
  SpectatorClass = ASpectatorPawn::StaticClass();
  ReplaySpectatorPlayerControllerClass = 
    APlayerController::StaticClass();
  ServerStatReplicatorClass = AServerStatReplicator::StaticClass();
}

*AInfo has a sprite component for displaying in Editor that we do not want to create
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GAMEMODEBASE RESETLEVEL

/**
* Overridable function called when resetting 
level. This is used to reset the game state while 
staying in the same map
* Default implementation calls Reset() on all 
actors except GameMode and Controllers
*/
UFUNCTION(BlueprintCallable, Category=Game)
virtual void ResetLevel();



void AGameModeBase::ResetLevel() {
  UE_LOG(LogGameMode, Verbose, TEXT("Reset %s"), *GetName());

  // Reset ALL controllers first
  for (FConstControllerIterator Iterator = GetWorld()->GetControllerIterator(); 
    Iterator; ++Iterator) {
    AController* Controller = Iterator->Get();
    APlayerController* PlayerController = Cast<APlayerController>(Controller);
    if (PlayerController) {
      PlayerController->ClientReset();
    }
    Controller->Reset();
  }

  // Reset all actors (except controllers, the GameMode, and any other actors specified by        
    ShouldReset())
  for (FActorIterator It(GetWorld()); It; ++It) {
    AActor* A = *It;
    if (A && !A->IsPendingKill() && A != this && !A->IsA<AController>() && ShouldReset(A)) {
      A->Reset();
    }
  }

  // Reset the GameMode
  Reset();

  // Notify the level script that the level has been reset
  ALevelScriptActor* LevelScript = GetWorld()->GetLevelScriptActor();
  if (LevelScript) {
    LevelScript->LevelReset();
  }
}
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GAMEMODEBASE CHOOSEPLAYERSTART

/**
* Return the 'best' player start for this player to spawn 
from
* Default implementation looks for a random unoccupied spot
* 
* @param Player is the controller for whom we are choosing 
a playerstart
* @returns AActor chosen as player start (usually a 
PlayerStart)
*/
UFUNCTION(BlueprintNativeEvent, Category=Game)
AActor* ChoosePlayerStart(AController* Player);



AActor* AGameModeBase::ChoosePlayerStart_Implementation(AController* Player) {
  // Choose a player start
  APlayerStart* FoundPlayerStart = nullptr;
  UClass* PawnClass = GetDefaultPawnClassForController(Player);
  APawn* PawnToFit = PawnClass ? PawnClass->GetDefaultObject<APawn>() : nullptr;
  TArray<APlayerStart*> UnOccupiedStartPoints;
  TArray<APlayerStart*> OccupiedStartPoints;
  UWorld* World = GetWorld();
  for (TActorIterator<APlayerStart> It(World); It; ++It) {
    APlayerStart* PlayerStart = *It;

    if (PlayerStart->IsA<APlayerStartPIE>()) {
      // Always prefer the first "Play from Here" PlayerStart, if we find one while in PIE mode
      FoundPlayerStart = PlayerStart;
      break;
    } else {
      FVector ActorLocation = PlayerStart->GetActorLocation();
      const FRotator ActorRotation = PlayerStart->GetActorRotation();
      if (!World->EncroachingBlockingGeometry(PawnToFit, ActorLocation, ActorRotation)) {
        UnOccupiedStartPoints.Add(PlayerStart);
      } else if (World->FindTeleportSpot(PawnToFit, ActorLocation, ActorRotation)) {
        OccupiedStartPoints.Add(PlayerStart);
      }
    }
  }
  if (FoundPlayerStart == nullptr) {
    if (UnOccupiedStartPoints.Num() > 0) {
      FoundPlayerStart = UnOccupiedStartPoints[FMath::RandRange(0, UnOccupiedStartPoints.Num()   
        - 1)];
    } else if (OccupiedStartPoints.Num() > 0) {
      FoundPlayerStart = OccupiedStartPoints[FMath::RandRange(0, OccupiedStartPoints.Num() -   
        1)];
    }
  }
  return FoundPlayerStart;
}
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CODE EXAMPLE: AACTOR
// Delegate signatures
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_FiveParams( FTakeAnyDamageSignature, AActor, 
OnTakeAnyDamage, AActor*, DamagedActor, float, Damage, const class UDamageType*, 
DamageType, class AController*, InstigatedBy, AActor*, DamageCauser );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_NineParams( FTakePointDamageSignature, AActor, 
OnTakePointDamage, AActor*, DamagedActor, float, Damage, class AController*, 
InstigatedBy, FVector, HitLocation, class UPrimitiveComponent*, FHitComponent, FName, 
BoneName, FVector, ShotFromDirection, const class UDamageType*, DamageType, AActor*, 
DamageCauser );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_SevenParams( FTakeRadialDamageSignature, 
AActor, OnTakeRadialDamage, AActor*, DamagedActor, float, Damage, const class 
UDamageType*, DamageType, FVector, Origin, FHitResult, HitInfo, class AController*, 
InstigatedBy, AActor*, DamageCauser );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorBeginOverlapSignature, 
AActor, OnActorBeginOverlap, AActor*, OverlappedActor, AActor*, OtherActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorEndOverlapSignature, AActor, 
OnActorEndOverlap, AActor*, OverlappedActor, AActor*, OtherActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_FourParams( FActorHitSignature, AActor, 
OnActorHit, AActor*, SelfActor, AActor*, OtherActor, FVector, NormalImpulse, const 
FHitResult&, Hit );

*Sparse delegates are delegates that are infrequently bound



DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam( FActorBeginCursorOverSignature, 
AActor, OnBeginCursorOver, AActor*, TouchedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam( FActorEndCursorOverSignature, 
AActor, OnEndCursorOver, AActor*, TouchedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorOnClickedSignature, 
AActor, OnClicked, AActor*, TouchedActor , FKey, ButtonPressed );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorOnReleasedSignature, 
AActor, OnReleased, AActor*, TouchedActor , FKey, ButtonReleased );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorOnInputTouchBeginSignatu
re, AActor, OnInputTouchBegin, ETouchIndex::Type, FingerIndex, AActor*, 
TouchedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorOnInputTouchEndSignature
, AActor, OnInputTouchEnd, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorBeginTouchOverSignature, 
AActor, OnInputTouchEnter, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams( FActorEndTouchOverSignature, 
AActor, OnInputTouchLeave, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor );

DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam(FActorDestroyedSignature, 
AActor, OnDestroyed, AActor*, DestroyedActor );
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorEndPlaySignature, AActor, 
OnEndPlay, AActor*, Actor , EEndPlayReason::Type, EndPlayReason);

...

UCLASS(BlueprintType, Blueprintable, config=Engine, meta=(ShortTooltip="An Actor is an 
object that can be placed or spawned in the world."))
class ENGINE_API AActor : public UObject
{
GENERATED_BODY()
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AACTOR CONSTRUCTOR
void AActor::InitializeDefaults() {
  PrimaryActorTick.TickGroup = TG_PrePhysics;
  // Default to no tick function, but if we set 'never ticks' to false (so there is a tick 
function) it is enabled by default
  PrimaryActorTick.bCanEverTick = false;
  PrimaryActorTick.bStartWithTickEnabled = true;
  PrimaryActorTick.SetTickFunctionEnable(false); 

  CustomTimeDilation = 1.0f;

  SetRole(ROLE_Authority);
  RemoteRole = ROLE_None;
  bReplicates = false;
  NetPriority = 1.0f;
  NetUpdateFrequency = 100.0f;
  MinNetUpdateFrequency = 2.0f;
  bNetLoadOnClient = true;
#if WITH_EDITORONLY_DATA
  bEditable = true;
  bListedInSceneOutliner = true;
  bIsEditorPreviewActor = false;
  bHiddenEdLayer = false;
  bHiddenEdTemporary = false;
  bHiddenEdLevel = false;
  bActorLabelEditable = true;
  SpriteScale = 1.0f;
  bEnableAutoLODGeneration = true;
  bOptimizeBPComponentData = false;
#endif // WITH_EDITORONLY_DATA *Called by all constructors



  NetCullDistanceSquared = 225000000.0f;
  NetDriverName = NAME_GameNetDriver;
  NetDormancy = DORM_Awake;
  // will be updated in PostInitProperties
  bActorEnableCollision = true;
  bActorSeamlessTraveled = false;
  bBlockInput = false;
  SetCanBeDamaged(true);
  bFindCameraComponentWhenViewTarget = true;
  bAllowReceiveTickEventOnDedicatedServer = true;
  bRelevantForNetworkReplays = true;
  bRelevantForLevelBounds = true;

  // Overlap collision settings
  bGenerateOverlapEventsDuringLevelStreaming = false;
  UpdateOverlapsMethodDuringLevelStreaming = EActorUpdateOverlapsMethod::UseConfigDefault;
  DefaultUpdateOverlapsMethodDuringLevelStreaming = EActorUpdateOverlapsMethod::OnlyUpdateMovable;

  bHasDeferredComponentRegistration = false;
#if WITH_EDITORONLY_DATA
  PivotOffset = FVector::ZeroVector;
#endif
  SpawnCollisionHandlingMethod = ESpawnActorCollisionHandlingMethod::AlwaysSpawn;

#if (CSV_PROFILER && !UE_BUILD_SHIPPING)
  // Increment actor class count
  {
    if (!HasAnyFlags(RF_ArchetypeObject | RF_ClassDefaultObject)) {
      FScopeLock Lock(&CSVActorClassNameToCountMapLock);

      const UClass* ParentNativeClass = GetParentNativeClass(GetClass());
      FName NativeClassName = ParentNativeClass ? ParentNativeClass->GetFName() : NAME_None;
      int32& CurrentCount = CSVActorClassNameToCountMap.FindOrAdd(NativeClassName);
      CurrentCount++;
      CSVActorTotalCount++;
    }
  }
#endif // (CSV_PROFILER && !UE_BUILD_SHIPPING)
}

CSV profiler outputs per-frame timelines  
for render and game threads
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OBSERVATIONS

▸ UE5 classes are quite complex and file structure is difficult to 
navigate without more advanced search features in an IDE 

▸ Code itself is designed to be highly readable 

▸ Verbose naming 

▸ Spare but clear in-line comments 

▸ Relatively easy to explore if you need to understand some 
functionality more deeply 

▸ Learn the systems as you encounter the systems
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TAKE AWAYS

▸ Advanced software systems (like game engines) are 
extremely large and complex 

▸ Understanding the use cases of a system make it more 
accessible  

▸ Patience and persistence is essential 

▸ Progress early on will be slow and steady  

▸ Try to solve issues on your own but don’t be afraid to ask 
for help
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FURTHER READING

▸ Full API of all UE5 modules <https://
docs.unrealengine.com/en-US/API/index.html>

https://docs.unrealengine.com/en-US/API/index.html
https://docs.unrealengine.com/en-US/API/index.html

