
UE4 CLASS DESIGN
CS354P
DR SARAH ABRAHAM

CS354P

HISTORY OF UNREAL ENGINE

▸ Engine development of Unreal Engine began in 1995

▸ Unreal (game) released in 1998

▸ Unreal (engine) mostly written by Tim Sweeney (founder of
Epic Games)

▸ Include features such as collision handling, lighting,
advanced texturing, bundled map editor, scripting
language, networking support

CS354P

UNREAL ENGINE 2 AND 3
▸ Unreal Engine 2 development began in 1999

▸ First game released in 2002

▸ Improved rendering, and tools pipeline

▸ Additional features included physics, particle systems, cinematic editing
systems, character animation systems

▸ Unreal Engine 3 development started in 2002

▸ First games released in 2006

▸ Engine added support for programmable shader pipeline, and improved
physics, graphics, sound, and tools pipeline

▸ Additional features included destructible environments, soft-body physics,
crowd simulation, global illumination, and multi-platform build targeting

CS354P

UNREAL ENGINE 4
▸ Development began in 2003

▸ Primarily written by Tim Sweeney in parallel with development of UE3
by the full development team

▸ First game, Daylight, released in 2014

▸ Engine released in 2014 under a subscription model

▸ In 2015 this changed to a pure royalties model

▸ Intended to simplify the scripting systems of previous engine versions and
support better global illumination models

▸ Major reworks to networking code before the release of Fortnite
(allowing more connections with high bandwidth/largescale rendering)

CS354P

▸ Networked shooter roots

▸ Traces of arena-based shooters visible in the underlying class structures

▸ Design philosophy built to support this with extensions/modifications to
support other genres

▸ Graphics and networking are “first class” features

▸ Highly optimized in both software and hardware support

▸ Well-supported pipeline

▸ Designed to integrate the most modern research possible

▸ Professional development supported over hobbyist development

▸ Yes, Blueprints is intended to bridge this gap

▸ But system fundamentally assumes large teams and expert systems users

WHAT DOES THIS MEAN FOR THE ENGINE?

CS354P

WORKING WITH MODULES

▸ Games, programs, and the UE5 editor itself are all targets
built by the UnrealBuildTool

▸ Compiled from C++ modules, or areas of functionality

▸ Build rules allow modules to interact

▸ C# scripts determine build rules and included modules

▸ These are the .cs files generated within the Source folder

CS354P

MAJOR MODULE CATEGORIES
▸ Runtime

▸ Features for efficiently creating and running a game

▸ Basis of gameplay programming (our primary focus in this class)

▸ Editor

▸ Features for working within the Editor or building out Editor tools

▸ Underlying systems that support gameplay programming

▸ Developer

▸ Features related to outside assets and tools that may require interfacing or modification

▸ Assists with asset management, testing suites, profiling and other features not within the
editor

▸ Plugins

▸ Features useful for runtime, editor, or developer, but are not within these three categories

▸ Added as benefits the project

CS354P

RUNTIME

▸ Core provides common framework for UE5 modules to
communicate as well as math and container libraries and
hardware support

▸ CoreUObject defines UObject type allowing for reflection,
garbage collection, and serialization within the runtime system

▸ Engine contains game functionality and types that support it,
such as Actors, Components, and Gameplay

▸ Other modules supported include advertising, analytics, AR/VR,
networking, physics, rendering, AI, GUI, audio, file parsing, etc...

CS354P

EDITOR

▸ Kismet provides Blueprint editor functionality and is supported
by KismetCompiler and KismetWidget

▸ LevelEditor contains level editing functionality and viewing
tools

▸ PropertyEditor contains functionality for displaying and editing
UProperties

▸ Other modules include support for landscape painting, mesh
editing, animations, AI, inputs, level streaming, light building,
and basically anything else that involves the Editor

CS354P

DEVELOPER

▸ AutomationController and AutomationWindow used to
connect to automation system

▸ OutputLog, GameplayDebugger, and Profiler (among many
others) provide debug information and profiling tools

▸ DeviceManager provides interface for interacting with
connected devices

▸ Other modules include support for mesh and texture handling,
build systems, deployment, audio tools and anything else related
to the tools pipeline and not the editor or gameplay directly

CS354P

PLUGINS

▸ Paper2D, Paper2DEditor, PaperSpriteSheetImporter, and
PaperTiledImporter provide sprite and flip-book (e.g. sprite
animation) support as well as sprite-based collision and sprite
importing

▸ PhysXVehicles and PhysXVehiclesEditor provide support for
creating vehicle physics

▸ SteamVR and SteamVREditor provide support for Steam VR
services

▸ Other modules include any potentially useful, but specialized,
functionality related to gameplay, editor or developer categories

CS354P

RUNTIME MODULES

▸ Main focus of this class!

▸ Other categories are incredibly important but game
engines are just too vast to explore in a single semester

▸ Gameplay programming is likely the most familiar and
most accessible aspect of all this

CS354P

CODE EXAMPLE: GAMEMODEBASE
/**
 * The GameModeBase defines the game being played. It governs the game rules, scoring, what
actors
 * are allowed to exist in this game type, and who may enter the game.
 *
 * It is only instanced on the server and will never exist on the client.
 *
 * A GameModeBase actor is instantiated when the level is initialized for gameplay in
 * C++ UGameEngine::LoadMap().
 *
 * The class of this GameMode actor is determined by (in order) either the URL ?game=xxx,
 * the GameMode Override value set in the World Settings, or the DefaultGameMode entry set
 * in the game's Project Settings.
 *
 * @see https://docs.unrealengine.com/latest/INT/Gameplay/Framework/GameMode/index.html
 */
UCLASS(config = Game, notplaceable, BlueprintType, Blueprintable, Transient, hideCategories =
(Info, Rendering, MovementReplication, Replication, Actor), meta = (ShortTooltip = "Game Mode
Base defines the game being played, its rules, scoring, and other facets of the game type."))

class ENGINE_API AGameModeBase : public AInfo
{

GENERATED_UCLASS_BODY()

*AInfo is a Actor base class that does not need physical representation in the world (e.g. a manager)

https://docs.unrealengine.com/latest/INT/Gameplay/Framework/GameMode/index.html

CS354P

GAMEMODEBASE CONSTRUCTOR
AGameModeBase::AGameModeBase(const FObjectInitializer& ObjectInitializer)
: Super(ObjectInitializer.DoNotCreateDefaultSubobject(TEXT("Sprite")))
{
 bNetLoadOnClient = false;
 bPauseable = true;
 bStartPlayersAsSpectators = false;

 DefaultPawnClass = ADefaultPawn::StaticClass();
 PlayerControllerClass = APlayerController::StaticClass();
 PlayerStateClass = APlayerState::StaticClass();
 GameStateClass = AGameStateBase::StaticClass();
 HUDClass = AHUD::StaticClass();
 GameSessionClass = AGameSession::StaticClass();
 SpectatorClass = ASpectatorPawn::StaticClass();
 ReplaySpectatorPlayerControllerClass =
 APlayerController::StaticClass();
 ServerStatReplicatorClass = AServerStatReplicator::StaticClass();
}

*AInfo has a sprite component for displaying in Editor that we do not want to create

CS354P

GAMEMODEBASE RESETLEVEL

/**
* Overridable function called when resetting
level. This is used to reset the game state while
staying in the same map
* Default implementation calls Reset() on all
actors except GameMode and Controllers
*/
UFUNCTION(BlueprintCallable, Category=Game)
virtual void ResetLevel();

void AGameModeBase::ResetLevel() {
 UE_LOG(LogGameMode, Verbose, TEXT("Reset %s"), *GetName());

 // Reset ALL controllers first
 for (FConstControllerIterator Iterator = GetWorld()->GetControllerIterator();
 Iterator; ++Iterator) {
 AController* Controller = Iterator->Get();
 APlayerController* PlayerController = Cast<APlayerController>(Controller);
 if (PlayerController) {
 PlayerController->ClientReset();
 }
 Controller->Reset();
 }

 // Reset all actors (except controllers, the GameMode, and any other actors specified by
 ShouldReset())
 for (FActorIterator It(GetWorld()); It; ++It) {
 AActor* A = *It;
 if (A && !A->IsPendingKill() && A != this && !A->IsA<AController>() && ShouldReset(A)) {
 A->Reset();
 }
 }

 // Reset the GameMode
 Reset();

 // Notify the level script that the level has been reset
 ALevelScriptActor* LevelScript = GetWorld()->GetLevelScriptActor();
 if (LevelScript) {
 LevelScript->LevelReset();
 }
}

CS354P

GAMEMODEBASE CHOOSEPLAYERSTART

/**
* Return the 'best' player start for this player to spawn
from
* Default implementation looks for a random unoccupied spot
*
* @param Player is the controller for whom we are choosing
a playerstart
* @returns AActor chosen as player start (usually a
PlayerStart)
*/
UFUNCTION(BlueprintNativeEvent, Category=Game)
AActor* ChoosePlayerStart(AController* Player);

AActor* AGameModeBase::ChoosePlayerStart_Implementation(AController* Player) {
 // Choose a player start
 APlayerStart* FoundPlayerStart = nullptr;
 UClass* PawnClass = GetDefaultPawnClassForController(Player);
 APawn* PawnToFit = PawnClass ? PawnClass->GetDefaultObject<APawn>() : nullptr;
 TArray<APlayerStart*> UnOccupiedStartPoints;
 TArray<APlayerStart*> OccupiedStartPoints;
 UWorld* World = GetWorld();
 for (TActorIterator<APlayerStart> It(World); It; ++It) {
 APlayerStart* PlayerStart = *It;

 if (PlayerStart->IsA<APlayerStartPIE>()) {
 // Always prefer the first "Play from Here" PlayerStart, if we find one while in PIE mode
 FoundPlayerStart = PlayerStart;
 break;
 } else {
 FVector ActorLocation = PlayerStart->GetActorLocation();
 const FRotator ActorRotation = PlayerStart->GetActorRotation();
 if (!World->EncroachingBlockingGeometry(PawnToFit, ActorLocation, ActorRotation)) {
 UnOccupiedStartPoints.Add(PlayerStart);
 } else if (World->FindTeleportSpot(PawnToFit, ActorLocation, ActorRotation)) {
 OccupiedStartPoints.Add(PlayerStart);
 }
 }
 }
 if (FoundPlayerStart == nullptr) {
 if (UnOccupiedStartPoints.Num() > 0) {
 FoundPlayerStart = UnOccupiedStartPoints[FMath::RandRange(0, UnOccupiedStartPoints.Num()
 - 1)];
 } else if (OccupiedStartPoints.Num() > 0) {
 FoundPlayerStart = OccupiedStartPoints[FMath::RandRange(0, OccupiedStartPoints.Num() -
 1)];
 }
 }
 return FoundPlayerStart;
}

CS354P

CODE EXAMPLE: AACTOR
// Delegate signatures
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_FiveParams(FTakeAnyDamageSignature, AActor,
OnTakeAnyDamage, AActor*, DamagedActor, float, Damage, const class UDamageType*,
DamageType, class AController*, InstigatedBy, AActor*, DamageCauser);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_NineParams(FTakePointDamageSignature, AActor,
OnTakePointDamage, AActor*, DamagedActor, float, Damage, class AController*,
InstigatedBy, FVector, HitLocation, class UPrimitiveComponent*, FHitComponent, FName,
BoneName, FVector, ShotFromDirection, const class UDamageType*, DamageType, AActor*,
DamageCauser);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_SevenParams(FTakeRadialDamageSignature,
AActor, OnTakeRadialDamage, AActor*, DamagedActor, float, Damage, const class
UDamageType*, DamageType, FVector, Origin, FHitResult, HitInfo, class AController*,
InstigatedBy, AActor*, DamageCauser);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorBeginOverlapSignature,
AActor, OnActorBeginOverlap, AActor*, OverlappedActor, AActor*, OtherActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorEndOverlapSignature, AActor,
OnActorEndOverlap, AActor*, OverlappedActor, AActor*, OtherActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_FourParams(FActorHitSignature, AActor,
OnActorHit, AActor*, SelfActor, AActor*, OtherActor, FVector, NormalImpulse, const
FHitResult&, Hit);

*Sparse delegates are delegates that are infrequently bound

DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam(FActorBeginCursorOverSignature,
AActor, OnBeginCursorOver, AActor*, TouchedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam(FActorEndCursorOverSignature,
AActor, OnEndCursorOver, AActor*, TouchedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorOnClickedSignature,
AActor, OnClicked, AActor*, TouchedActor , FKey, ButtonPressed);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorOnReleasedSignature,
AActor, OnReleased, AActor*, TouchedActor , FKey, ButtonReleased);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorOnInputTouchBeginSignatu
re, AActor, OnInputTouchBegin, ETouchIndex::Type, FingerIndex, AActor*,
TouchedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorOnInputTouchEndSignature
, AActor, OnInputTouchEnd, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorBeginTouchOverSignature,
AActor, OnInputTouchEnter, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorEndTouchOverSignature,
AActor, OnInputTouchLeave, ETouchIndex::Type, FingerIndex, AActor*, TouchedActor);

DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_OneParam(FActorDestroyedSignature,
AActor, OnDestroyed, AActor*, DestroyedActor);
DECLARE_DYNAMIC_MULTICAST_SPARSE_DELEGATE_TwoParams(FActorEndPlaySignature, AActor,
OnEndPlay, AActor*, Actor , EEndPlayReason::Type, EndPlayReason);

...

UCLASS(BlueprintType, Blueprintable, config=Engine, meta=(ShortTooltip="An Actor is an
object that can be placed or spawned in the world."))
class ENGINE_API AActor : public UObject
{
GENERATED_BODY()

CS354P

AACTOR CONSTRUCTOR
void AActor::InitializeDefaults() {
 PrimaryActorTick.TickGroup = TG_PrePhysics;
 // Default to no tick function, but if we set 'never ticks' to false (so there is a tick
function) it is enabled by default
 PrimaryActorTick.bCanEverTick = false;
 PrimaryActorTick.bStartWithTickEnabled = true;
 PrimaryActorTick.SetTickFunctionEnable(false);

 CustomTimeDilation = 1.0f;

 SetRole(ROLE_Authority);
 RemoteRole = ROLE_None;
 bReplicates = false;
 NetPriority = 1.0f;
 NetUpdateFrequency = 100.0f;
 MinNetUpdateFrequency = 2.0f;
 bNetLoadOnClient = true;
#if WITH_EDITORONLY_DATA
 bEditable = true;
 bListedInSceneOutliner = true;
 bIsEditorPreviewActor = false;
 bHiddenEdLayer = false;
 bHiddenEdTemporary = false;
 bHiddenEdLevel = false;
 bActorLabelEditable = true;
 SpriteScale = 1.0f;
 bEnableAutoLODGeneration = true;
 bOptimizeBPComponentData = false;
#endif // WITH_EDITORONLY_DATA *Called by all constructors

 NetCullDistanceSquared = 225000000.0f;
 NetDriverName = NAME_GameNetDriver;
 NetDormancy = DORM_Awake;
 // will be updated in PostInitProperties
 bActorEnableCollision = true;
 bActorSeamlessTraveled = false;
 bBlockInput = false;
 SetCanBeDamaged(true);
 bFindCameraComponentWhenViewTarget = true;
 bAllowReceiveTickEventOnDedicatedServer = true;
 bRelevantForNetworkReplays = true;
 bRelevantForLevelBounds = true;

 // Overlap collision settings
 bGenerateOverlapEventsDuringLevelStreaming = false;
 UpdateOverlapsMethodDuringLevelStreaming = EActorUpdateOverlapsMethod::UseConfigDefault;
 DefaultUpdateOverlapsMethodDuringLevelStreaming = EActorUpdateOverlapsMethod::OnlyUpdateMovable;

 bHasDeferredComponentRegistration = false;
#if WITH_EDITORONLY_DATA
 PivotOffset = FVector::ZeroVector;
#endif
 SpawnCollisionHandlingMethod = ESpawnActorCollisionHandlingMethod::AlwaysSpawn;

#if (CSV_PROFILER && !UE_BUILD_SHIPPING)
 // Increment actor class count
 {
 if (!HasAnyFlags(RF_ArchetypeObject | RF_ClassDefaultObject)) {
 FScopeLock Lock(&CSVActorClassNameToCountMapLock);

 const UClass* ParentNativeClass = GetParentNativeClass(GetClass());
 FName NativeClassName = ParentNativeClass ? ParentNativeClass->GetFName() : NAME_None;
 int32& CurrentCount = CSVActorClassNameToCountMap.FindOrAdd(NativeClassName);
 CurrentCount++;
 CSVActorTotalCount++;
 }
 }
#endif // (CSV_PROFILER && !UE_BUILD_SHIPPING)
}

CSV profiler outputs per-frame timelines
for render and game threads

CS354P

OBSERVATIONS

▸ UE5 classes are quite complex and file structure is difficult to
navigate without more advanced search features in an IDE

▸ Code itself is designed to be highly readable

▸ Verbose naming

▸ Spare but clear in-line comments

▸ Relatively easy to explore if you need to understand some
functionality more deeply

▸ Learn the systems as you encounter the systems

CS354P

TAKE AWAYS

▸ Advanced software systems (like game engines) are
extremely large and complex

▸ Understanding the use cases of a system make it more
accessible

▸ Patience and persistence is essential

▸ Progress early on will be slow and steady

▸ Try to solve issues on your own but don’t be afraid to ask
for help

CS354P

FURTHER READING

▸ Full API of all UE5 modules <https://
docs.unrealengine.com/en-US/API/index.html>

https://docs.unrealengine.com/en-US/API/index.html
https://docs.unrealengine.com/en-US/API/index.html

