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MANY GAMES HAVE PLAYABLE CHARACTERS

▸ Playable characters can: 

▸ Build story and narrative 

▸ Provide a direct emotional hook 
for players 

▸ Provide a blank template for role-
playing/power fantasy 

▸ Regardless of intended experience: 

▸ Player spends the most time 
looking at them 

▸ Player interacts with the world 
through them
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PLAYER PACKAGE

▸ General term for player character’s abilities and 
movements 

▸ Directly tied to character animations and the 
responsiveness of the controls 

▸ Coordinated effort by designers, programmers, and artists 
to create an enjoyable* way to interact with the game

*Or not...
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CHARACTER MOVEMENTS

▸ Way in which a player moves the character through the world 

▸ Walking 

▸ Jumping 

▸ Flying 

▸ Swimming 

▸ Crawling 

▸ etc.. 

▸ Usually physically based 

▸ Simulated or kinematic 

▸ Usually separate from “abilities” but not necessarily...

Downwell
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SIMULATED

▸ Object in the scene is subject to physics 

▸ Applied forces change its velocity 

▸ Interactions with other simulated objects affect it

QWOP
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KINEMATIC

▸ Object in the scene is subject to movements and 
trajectories outside of physics 

▸ Not necessarily subject to forces in the simulation 

▸ Affects simulated objects but not necessarily affected by 
them

Assassin’s Creed
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SIMULATED OR KINEMATIC?

▸ Kinematic generally more common as baseline in player packages 

▸ Can still apply friction, air control etc 

▸ Reduces wild physics bugs 

▸ More designer control 

▸ Kinematic objects can still be subject to physical forces 

▸ Usually handled via callbacks 

▸ Can combine for a hybrid solution
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UE5: CHARACTER MOVEMENT COMPONENT

▸ An Actor component that provides both movement functionality 
and network replication for movements 

▸ By default attached to Character Actors (a subclass of Pawns 
designed for bipedal playable characters) 

▸ PerformMovement called during Tick to determine desired 
acceleration based on player input and settings 

▸ Once finalized calculations are made, movement is applied to 
the Character 

▸ Movements sent to the server and applied authoritatively
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CHARACTER MOVEMENT MODES

▸ Enum MovementMode provided to cover basic use-cases of 
character movement 

▸ Walking applies friction and allows “stepping up” but does 
not have vertical velocity 

▸ Falling applies gravity after stepping off an edge or jumping 

▸ Flying ignores the effects of gravity 

▸ Swimming applies gravity and buoyancy 

▸ Custom allows creation of custom functionality
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CHARACTER MOVEMENT PROPERTIES

▸ Many, many parameters available for tuning movement 

▸ Basic physics concerns (mass, maximum acceleration, linear 
friction, gravity, etc) 

▸ Game-specific concerns (air control, ledge falling, client-server 
information, etc) 

▸ If you have a question (how high can I jump, what is my max 
speed, have I landed, etc) there is probably a property that has an 
answer 

▸ Helps to know some physics and networking terminology
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CHARACTER MOVEMENT FUNCTIONS
▸ Multiple stages utilized for calculating the character’s movement 

▸ Common functions to interact with CharacterMovementComponent within the 
Character/Pawn class are: 

▸ AddMovementInput

▸ Jump

▸ LaunchCharacter

▸ Crouch/UnCrouch

▸ Common ways CharacterMovementComponent starts to process these are: 

▸ AddForce/AddImpulse

▸ Crouch/UnCrouch

▸ Launch
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AN EXAMPLE: LAUNCHCHARACTER (CALLED FROM CHARACTER)
if (CharacterMovement) {

  FVector FinalVel = LaunchVelocity;

  const FVector Velocity = GetVelocity();

  if (!bXYOverride) {

    FinalVel.X += Velocity.X;

    FinalVel.Y += Velocity.Y;

  }

  if (!bZOverride) {

    FinalVel.Z += Velocity.Z;

  }

  CharacterMovement->Launch(FinalVel);

  OnLaunched(LaunchVelocity, bXYOverride, bZOverride);

}

CharacterMovementComponent
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AN EXAMPLE: LAUNCHCHARACTER (HANDLED IN MOVEMENT)
void UCharacterMovementComponent::Launch(FVector const& LaunchVel) {

  if ((MovementMode != MOVE_None) && IsActive() && HasValidData()) {

    PendingLaunchVelocity = LaunchVel;

  }

}

bool UCharacterMovementComponent::HandlePendingLaunch() {

  if (!PendingLaunchVelocity.IsZero() && HasValidData()) {

    Velocity = PendingLaunchVelocity;

    SetMovementMode(MOVE_Falling);

    PendingLaunchVelocity = FVector::ZeroVector;

    bForceNextFloorCheck = true;

    return true;

   }

return false;

}

Called from PerformMovement 
and SimulateMovement
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CHARACTER INTERACTIONS

▸ Way in which the playable character interacts with the world and 
other playable and non-playable characters 

▸ Fighting 

▸ Building 

▸ Puzzle-solving 

▸ Talking 

▸ etc... 

▸ Implementation depends heavily on the game
Bayonetta 2
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HIT AND HURT BOXES

▸ Primarily terms in fighting games, but used in any game 
where player characters can deal or receive damage 

▸ Can more generally be called collision volumes 

▸ Hit boxes provide event information for when the player 
character has hit something 

▸ Hurt boxes provide event information for when the player 
character has been hit by something
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NOT STRICTLY WRONG...

Lag compensation in Counter Strike

Guilty Gear

Skullgirls



CS354P

IMPLEMENTATION AND DESIGN

▸ The combinations of hit and hurt (plus additional things like block 
proximity) boxes leads to a lot of potential states in fighting games  

▸ Concepts like fuzzy guard/option selects/etc come from these edge 
cases*

https://www.youtube.com/watch?v=jdGO2rfeKrQ

*the first fighting game “combo” system was a bug in Street Fighter II

https://www.youtube.com/watch?v=jdGO2rfeKrQ
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PICKUPS AND DROPS

Spec Ops: The Line

▸ Ability to equip and unequip 
items or weapons 

▸ May or may not involve an 
inventory 

▸ Item is a separate actor 

▸ Memory management 
separate from player 
character 

▸ Location and orientation 
matches player character
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ATTACHING AND DETACHING OBJECTS IN UNREAL

▸ Two ways to attach an actor to another actor: 

▸ AttachToActor

▸ Attaches to root component of Actor 

▸ AttachActorToComponent

▸ Attaches to specified component of Actor 

▸ Both functions will work in most situations and both can specify a 
named socket (e.g. attach an item to a character’s hand etc) to attach to 

▸ FAttachmentTransformRules specifies how the attached Actor 
should move relative to the parent Actor
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UNREAL: OBJECT SPAWNING

▸ Can spawn Actors using UWorld::SpawnActor() 

▸ Creates a new instance of specified class 

▸ Returns pointer to that object 

▸ Specifies initial position and orientation of spawned Actor 

▸ Can spawn Blueprint Actors by accessing the BP (either via a 
editor or a reference path) then call SpawnActor as usual: 

GetWorld()->SpawnActor<MyActor>(MyActorBP, 
FVector::ZeroVector, FRotator::ZeroRotator);

Note: Keep a reference to the spawned object if you want to remove it later
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MORE ON BP OBJECT SPAWNING

▸ Must have access to the BP Class in order to spawn from C++ 

▸ Create a property in .h to connect: 

UPROPERTY(EditDefaultsOnly, ...)
UClass * myClassBP; //or TSubclassOf<MYBPClass>

▸ Connect this pointer to BP class information 

▸ Use BP editor to connect this to requested class 

▸ Use FObjectFinder/FClassFinder to assign myClassBP:

static ConstructorHelpers::FClassFinder<UClass> myClass(pathtoBP);

if (myClass.Class)

  myClassBP = (UClass *)myClass.Class;
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CONTEXT-SENSITIVE ABILITIES

▸ Abilities that are only available during certain times under 
certain conditions 

▸ Can implement using a combination of raycasts/trigger 
volumes and character state to determine how to 
interact
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CHARACTER STATE

▸ Games are inherently very stateful 

▸ Awful for programming but it’s what makes them engaging 
and dynamic 

▸ Playable characters tend to have many different states as well 

▸ Idling, Walking, Running, Jumping, Dashing, Crouching, 
Diving, Interacting, Striking, On Cooldown, Taking 
Damage, Injured, Dying, Dead, etc... 

▸ Note that these states are not necessarily exclusive...
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WHAT WE NEED TO KNOW...

▸ Can I transition from my current state to the requested 
state? 

▸ How do I update my state?
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FINITE STATE MACHINES (FSM)

▸ Mathematical model of computation that describes a 
collection of states the machine can be in at any time 

▸ Must be in exactly one state 

▸ Can only transition between certain states

Wikipedia example: coin-operated turnstile
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FSMS IN GAMES

https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/
Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php

Animation states for a character

https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php
https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php
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TRACKING CHARACTER STATES

▸ Possible to implement FSMs in a number of different ways 
(not implemented by default in Unreal outside of animations) 

▸ Regardless of implementation, useful to connect to UENUMs 
so that enumerated states are exposed to Blueprints and 
AnimationBlueprints (more on that later) 

▸ Also regardless of implementation, thinking through and 
careful planning of your states and transitions is essential for 
avoiding corner case bugs (which will happen regardless)
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FURTHER READING

▸ <https://frametrapped.com/> 

▸ <https://www.eventhubs.com/guides/2009/sep/18/guide-
understanding-hit-boxes-street-fighter/> 

▸ <https://gamecrate.com/how-e-sports-understanding-
hitbox-meme/16773> 

▸ <https://ringsandcoins.com/retrovision-street-fighter-ii-
bug-that-changed-gaming-forever/>

https://frametrapped.com/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/

