
OVERVIEW: PLAYER PACKAGE

CS354P
DR SARAH ABRAHAM

CS354P

MANY GAMES HAVE PLAYABLE CHARACTERS

▸ Playable characters can:

▸ Build story and narrative

▸ Provide a direct emotional hook
for players

▸ Provide a blank template for role-
playing/power fantasy

▸ Regardless of intended experience:

▸ Player spends the most time
looking at them

▸ Player interacts with the world
through them

CS354P

PLAYER PACKAGE

▸ General term for player character’s abilities and
movements

▸ Directly tied to character animations and the
responsiveness of the controls

▸ Coordinated effort by designers, programmers, and artists
to create an enjoyable* way to interact with the game

*Or not...

CS354P

CHARACTER MOVEMENTS

▸ Way in which a player moves the character through the world

▸ Walking

▸ Jumping

▸ Flying

▸ Swimming

▸ Crawling

▸ etc..

▸ Usually physically based

▸ Simulated or kinematic

▸ Usually separate from “abilities” but not necessarily...

Downwell

CS354P

SIMULATED

▸ Object in the scene is subject to physics

▸ Applied forces change its velocity

▸ Interactions with other simulated objects affect it

QWOP

CS354P

KINEMATIC

▸ Object in the scene is subject to movements and
trajectories outside of physics

▸ Not necessarily subject to forces in the simulation

▸ Affects simulated objects but not necessarily affected by
them

Assassin’s Creed

CS354P

SIMULATED OR KINEMATIC?

▸ Kinematic generally more common as baseline in player packages

▸ Can still apply friction, air control etc

▸ Reduces wild physics bugs

▸ More designer control

▸ Kinematic objects can still be subject to physical forces

▸ Usually handled via callbacks

▸ Can combine for a hybrid solution

CS354P

UE5: CHARACTER MOVEMENT COMPONENT

▸ An Actor component that provides both movement functionality
and network replication for movements

▸ By default attached to Character Actors (a subclass of Pawns
designed for bipedal playable characters)

▸ PerformMovement called during Tick to determine desired
acceleration based on player input and settings

▸ Once finalized calculations are made, movement is applied to
the Character

▸ Movements sent to the server and applied authoritatively

CS354P

CHARACTER MOVEMENT MODES

▸ Enum MovementMode provided to cover basic use-cases of
character movement

▸ Walking applies friction and allows “stepping up” but does
not have vertical velocity

▸ Falling applies gravity after stepping off an edge or jumping

▸ Flying ignores the effects of gravity

▸ Swimming applies gravity and buoyancy

▸ Custom allows creation of custom functionality

CS354P

CHARACTER MOVEMENT PROPERTIES

▸ Many, many parameters available for tuning movement

▸ Basic physics concerns (mass, maximum acceleration, linear
friction, gravity, etc)

▸ Game-specific concerns (air control, ledge falling, client-server
information, etc)

▸ If you have a question (how high can I jump, what is my max
speed, have I landed, etc) there is probably a property that has an
answer

▸ Helps to know some physics and networking terminology

CS354P

CHARACTER MOVEMENT FUNCTIONS
▸ Multiple stages utilized for calculating the character’s movement

▸ Common functions to interact with CharacterMovementComponent within the
Character/Pawn class are:

▸ AddMovementInput

▸ Jump

▸ LaunchCharacter

▸ Crouch/UnCrouch

▸ Common ways CharacterMovementComponent starts to process these are:

▸ AddForce/AddImpulse

▸ Crouch/UnCrouch

▸ Launch

CS354P

AN EXAMPLE: LAUNCHCHARACTER (CALLED FROM CHARACTER)
if (CharacterMovement) {

 FVector FinalVel = LaunchVelocity;

 const FVector Velocity = GetVelocity();

 if (!bXYOverride) {

 FinalVel.X += Velocity.X;

 FinalVel.Y += Velocity.Y;

 }

 if (!bZOverride) {

 FinalVel.Z += Velocity.Z;

 }

 CharacterMovement->Launch(FinalVel);

 OnLaunched(LaunchVelocity, bXYOverride, bZOverride);

}

CharacterMovementComponent

CS354P

AN EXAMPLE: LAUNCHCHARACTER (HANDLED IN MOVEMENT)
void UCharacterMovementComponent::Launch(FVector const& LaunchVel) {

 if ((MovementMode != MOVE_None) && IsActive() && HasValidData()) {

 PendingLaunchVelocity = LaunchVel;

 }

}

bool UCharacterMovementComponent::HandlePendingLaunch() {

 if (!PendingLaunchVelocity.IsZero() && HasValidData()) {

 Velocity = PendingLaunchVelocity;

 SetMovementMode(MOVE_Falling);

 PendingLaunchVelocity = FVector::ZeroVector;

 bForceNextFloorCheck = true;

 return true;

 }

return false;

}

Called from PerformMovement
and SimulateMovement

CS354P

CHARACTER INTERACTIONS

▸ Way in which the playable character interacts with the world and
other playable and non-playable characters

▸ Fighting

▸ Building

▸ Puzzle-solving

▸ Talking

▸ etc...

▸ Implementation depends heavily on the game
Bayonetta 2

CS354P

HIT AND HURT BOXES

▸ Primarily terms in fighting games, but used in any game
where player characters can deal or receive damage

▸ Can more generally be called collision volumes

▸ Hit boxes provide event information for when the player
character has hit something

▸ Hurt boxes provide event information for when the player
character has been hit by something

CS354P

NOT STRICTLY WRONG...

Lag compensation in Counter Strike

Guilty Gear

Skullgirls

CS354P

IMPLEMENTATION AND DESIGN

▸ The combinations of hit and hurt (plus additional things like block
proximity) boxes leads to a lot of potential states in fighting games

▸ Concepts like fuzzy guard/option selects/etc come from these edge
cases*

https://www.youtube.com/watch?v=jdGO2rfeKrQ

*the first fighting game “combo” system was a bug in Street Fighter II

https://www.youtube.com/watch?v=jdGO2rfeKrQ

CS354P

PICKUPS AND DROPS

Spec Ops: The Line

▸ Ability to equip and unequip
items or weapons

▸ May or may not involve an
inventory

▸ Item is a separate actor

▸ Memory management
separate from player
character

▸ Location and orientation
matches player character

CS354P

ATTACHING AND DETACHING OBJECTS IN UNREAL

▸ Two ways to attach an actor to another actor:

▸ AttachToActor

▸ Attaches to root component of Actor

▸ AttachActorToComponent

▸ Attaches to specified component of Actor

▸ Both functions will work in most situations and both can specify a
named socket (e.g. attach an item to a character’s hand etc) to attach to

▸ FAttachmentTransformRules specifies how the attached Actor
should move relative to the parent Actor

CS354P

UNREAL: OBJECT SPAWNING

▸ Can spawn Actors using UWorld::SpawnActor()

▸ Creates a new instance of specified class

▸ Returns pointer to that object

▸ Specifies initial position and orientation of spawned Actor

▸ Can spawn Blueprint Actors by accessing the BP (either via a
editor or a reference path) then call SpawnActor as usual:

GetWorld()->SpawnActor<MyActor>(MyActorBP,
FVector::ZeroVector, FRotator::ZeroRotator);

Note: Keep a reference to the spawned object if you want to remove it later

CS354P

MORE ON BP OBJECT SPAWNING

▸ Must have access to the BP Class in order to spawn from C++

▸ Create a property in .h to connect:

UPROPERTY(EditDefaultsOnly, ...)
UClass * myClassBP; //or TSubclassOf<MYBPClass>

▸ Connect this pointer to BP class information

▸ Use BP editor to connect this to requested class

▸ Use FObjectFinder/FClassFinder to assign myClassBP:

static ConstructorHelpers::FClassFinder<UClass> myClass(pathtoBP);

if (myClass.Class)

 myClassBP = (UClass *)myClass.Class;

CS354P

CONTEXT-SENSITIVE ABILITIES

▸ Abilities that are only available during certain times under
certain conditions

▸ Can implement using a combination of raycasts/trigger
volumes and character state to determine how to
interact

CS354P

CHARACTER STATE

▸ Games are inherently very stateful

▸ Awful for programming but it’s what makes them engaging
and dynamic

▸ Playable characters tend to have many different states as well

▸ Idling, Walking, Running, Jumping, Dashing, Crouching,
Diving, Interacting, Striking, On Cooldown, Taking
Damage, Injured, Dying, Dead, etc...

▸ Note that these states are not necessarily exclusive...

CS354P

WHAT WE NEED TO KNOW...

▸ Can I transition from my current state to the requested
state?

▸ How do I update my state?

CS354P

FINITE STATE MACHINES (FSM)

▸ Mathematical model of computation that describes a
collection of states the machine can be in at any time

▸ Must be in exactly one state

▸ Can only transition between certain states

Wikipedia example: coin-operated turnstile

CS354P

FSMS IN GAMES

https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/
Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php

Animation states for a character

https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php
https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php

CS354P

TRACKING CHARACTER STATES

▸ Possible to implement FSMs in a number of different ways
(not implemented by default in Unreal outside of animations)

▸ Regardless of implementation, useful to connect to UENUMs
so that enumerated states are exposed to Blueprints and
AnimationBlueprints (more on that later)

▸ Also regardless of implementation, thinking through and
careful planning of your states and transitions is essential for
avoiding corner case bugs (which will happen regardless)

CS354P

FURTHER READING

▸ <https://frametrapped.com/>

▸ <https://www.eventhubs.com/guides/2009/sep/18/guide-
understanding-hit-boxes-street-fighter/>

▸ <https://gamecrate.com/how-e-sports-understanding-
hitbox-meme/16773>

▸ <https://ringsandcoins.com/retrovision-street-fighter-ii-
bug-that-changed-gaming-forever/>

https://frametrapped.com/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/

