CS354P
DR SARAH ABRAHAM

OVERVIEW: PLAYER PACKAGE



CS354P

MANY GAMES HAVE PLAYABLE CHARACTERS

» Playable characters can:
» Build story and narrative

» Provide a direct emotional hook
for players

» Provide a blank template for role-
playing/power fantasy

» Regardless of intended experience:

» Player spends the most time
looking at them

» Player interacts with the world _ |
th rough them You look adorable!!

Y/




CS354P

PLAYER PACKAGE

» General term for player character’s abilities and
movements

» Directly tied to character animations and the
responsiveness of the controls

» Coordinated effort by designers, programmers, and artists
to create an enjoyable* way to interact with the game

*Or not...



CS354P

CHARACTER MOVEMENTS

» Way in which a player moves the character through the world
» Walking S
» Jumping I
» Flying
» Swimming
» Crawling
» etc..

» Usually physically based

Downwell

» Simulated or kinematic

» Usually separate from “abilities” but not necessarily...






CS354P

KINEMATIC

» Object in the scene is subject to movements and
trajectories outside of physics

» Not necessarily subject to forces in the simulation

» Affects simulated objects but not necessarily affected by
them

Assassin’s Creed



CS354P

SIMULATED OR KINEMATIC?

» Kinematic generally more common as baseline in player packages
» Can still apply friction, air control etc
» Reduces wild physics bugs
» More designer control
» Kinematic objects can still be subject to physical forces
» Usually handled via callbacks

» Can combine for a hybrid solution



CS354P

UES: CHARACTER MOVEMENT COMPONENT

» An Actor component that provides both movement functionality
and network replication for movements

» By default attached to Character Actors (a subclass of Pawns
designed for bipedal playable characters)

» PerformMovement called during Tick to determine desired
acceleration based on player input and settings

» Once finalized calculations are made, movement is applied to
the Character

» Movements sent to the server and applied authoritatively



CS354P

CHARACTER MOVEMENT MODES

» Enum MovementMode provided to cover basic use-cases of
character movement

» Walking applies friction and allows “stepping up” but does
not have vertical velocity

» Falling applies gravity after stepping off an edge or jumping
» Flying ignores the effects of gravity
» Swimming applies gravity and buoyancy

» Custom allows creation of custom functionality



CS354P

CHARACTER MOVEMENT PROPERTIES

» Many, many parameters available for tuning movement

» Basic physics concerns (mass, maximum acceleration, linear
friction, gravity, etc)

» Game-specific concerns (air control, ledge falling, client-server
information, etc)

» If you have a question (how high can | jump, what is my max
speed, have | landed, etc) there is probably a property that has an

answer

» Helps to know some physics and networking terminology



CS354P

CHARACTER MOVEMENT FUNCTIONS

» Multiple stages utilized for calculating the character’'s movement

» Common functions to interact with CharacterMovementComponent within the
Character/Pawn class are:

» AddMovementInput
» Jump

» LaunchCharacter
» Crouch/UnCrouch

» Common ways CharacterMovementComponent starts to process these are:
» AddForce/AddImpulse

» Crouch/UnCrouch

» Launch



CS354P

AN EXAMPLE: LAUNCHCHARACTER (CALLED FROM CHARACTER)
. — CharacterMovementComponent

FVector FinalVel = LaunchVelocity;

const FVector Velocity = GetVelocity();

if (!bXYOverride) {
FinalvVel.X += Velocity.X;
FinalvVel.Y += Velocity.Y;

}

if (!bZOverride) {

FinalvVel.Z += Velocity.Z;

CharacterMovement->Launch(FinalVel);

OnLaunched(LaunchVelocity, bXYOverride, bZOverride);



CS354P

AN EXAMPLE: LAUNCHCHARACTER (HANDLED IN MOVEMENT)

void UCharacterMovementComponent: :Launch(FVector const& LaunchVel) {
if ((MovementMode != MOVE None) && IsActive() && HasValidData()) {

PendingLaunchVelocity = LaunchVel;
Called from PerformMovement

}
} and SimulateMovement
bool UCharacterMovementComponent]:HandlePendingLaunch() {

if (!PendingLaunchVelocity.IsZero() && HasValidData()) {

Velocity = PendingLaunchVelocity;
SetMovementMode (MOVE Falling);
PendingLaunchVelocity = FVector::ZeroVector;
bForceNextFloorCheck = true;

return true;

}

return false;

}



CS354P

CHARACTER INTERACTIONS

» Way in which the playable character interacts with the world and
other playable and non-playable characters

» Fighting

» Building

» Puzzle-solving
» Talking

» etc...

» Implementation depends heavily on the game



CS354P

HIT AND HURT BOXES

» Primarily terms in fighting games, but used in any game
where player characters can deal or receive damage

» Can more generally be called collision volumes

» Hit boxes provide event information for when the player
character has hit something

» Hurt boxes provide event information for when the player
character has been hit by something






CS354P

NOT STRICTLY WRONG...

B e gm v A

Lag compensation in Counter Strike

Skullgirls



CS354P *the first fighting game “combo” system was a bug in Street Fighter |l

IMPLEMENTATION AND DESIGN

» The combinations of hit and hurt (plus additional things like block
proximity) boxes leads to a lot of potential states in fighting games

» Concepts like fuzzy guard/option selects/etc come from these edge
cases”

&
PLAYER 1
- R. MIKA

EX Peach

s
o«
™
"4
.
L
-
.
-
w
b

ar .
o
vmmam 0 TRAGGEER
—— a— W,
 EDeesd—e—

https://www.youtube.com/watch?v={dGO2rfeKrQ



https://www.youtube.com/watch?v=jdGO2rfeKrQ

CS354P

PICKUPS AND DROPS

» Ability to equip and unequip
Iitems or weapons

» May or may not involve an
Inventory

» Item is a separate actor

» Memory management
separate from player
character

» Location and orientation
matches player character

Spec Ops: The Line



CS354P

ATTACHING AND DETACHING OBJECTS IN UNREAL

» Two ways to attach an actor to another actor:

» AttachToActor

» Attaches to root component of Actor

» AttachActorToComponent

» Attaches to specified component of Actor

» Both functions will work in most situations and both can specify a
named socket (e.g. attach an item to a character’s hand etc) to attach to

» FAttachmentTransformRules specifies how the attached Actor
should move relative to the parent Actor



CS354P

UNREAL: OBJECT SPAWNING

» Can spawn Actors using UWorld: : SpawnActor ()
» Creates a new instance of specified class
» Returns pointer to that object
» Specifies initial position and orientation of spawned Actor

» Can spawn Blueprint Actors by accessing the BP (either via a
editor or a reference path) then call SpawnActor as usual:

GetWorld()->SpawnActor<MyActor>(MyActorBP,
FVector::ZeroVector, FRotator::ZeroRotator);

Note: Keep a reference to the spawned object if you want to remove it later



CS354P

MORE ON BP OBJECT SPAWNING

» Must have access to the BP Class in order to spawn from C++

» Create a property in .h to connect:

UPROPERTY (EditDefaultsOnly, ...)
UClass * myClassBP; //or TSubclassOf<MYBPClass>

» Connect this pointer to BP class information
» Use BP editor to connect this to requested class
» Use FObjectFinder/FClassFinder to assign myClassBP:
static ConstructorHelpers::FClassFinder<UClass> myClass(pathtoBP);

1f (myClass.Class)

myClassBP (UClass *)myClass.Class;



CS354P

CONTEXT-SENSITIVE ABILITIES

» Abilities that are only available during certain times under
certain conditions

» Can implement using a combination of raycasts/trigger
volumes and character state to determine how to
Interact



CS354P

CHARACTER STATE

» Games are inherently very stateful

» Awful for programming but it's what makes them engaging
and dynamic

» Playable characters tend to have many different states as well

» ldling, Walking, Running, Jumping, Dashing, Crouching,
Diving, Interacting, Striking, On Cooldown, Taking
Damage, Injured, Dying, Dead, etc...

» Note that these states are not necessarily exclusive...



CS354P

WHAT WE NEED TO KNOW...

» Can | transition from my current state to the requested
state?

» How do | update my state?



CS354P

FINITE STATE MACHINES (FSM)

» Mathematical model of computation that describes a
collection of states the machine can be in at any time

» Must be in exactly one state

» Can only transition between certain states

Push Coin

(& @

Push Coin

Wikipedia example: coin-operated turnstile



CS354P

FSMS IN GAMES

Animation states for a character

https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/

Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php



https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php
https://www.gamasutra.com/blogs/HeikkiTormala/20121214/183567/Creating_fluid_motion_transitions_with_Unity_and_Mecanim.php

CS354P

TRACKING CHARACTER STATES

» Possible to implement FSMs in a number of different ways
(not implemented by default in Unreal outside of animations)

» Regardless of implementation, useful to connect to UENUMs
so that enumerated states are exposed to Blueprints and
AnimationBlueprints (more on that later)

» Also regardless of implementation, thinking through and
careful planning of your states and transitions is essential for
avoiding corner case bugs (which will happen regardless)



CS354P

FURTHER READING

» <https://frametrapped.com/>

» <https://www.eventhubs.com/guides/2009/sep/18/guide-
understanding-hit-boxes-street-fighter/>

» <https://gamecrate.com/how-e-sports-understanding-
hitbox-meme/16773>

» <https://ringsandcoins.com/retrovision-street-fighter-ii-
bug-that-changed-gaming-forever/>



https://frametrapped.com/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://www.eventhubs.com/guides/2009/sep/18/guide-understanding-hit-boxes-street-fighter/
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://gamecrate.com/how-e-sports-understanding-hitbox-meme/16773
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/
https://ringsandcoins.com/retrovision-street-fighter-ii-bug-that-changed-gaming-forever/

