
OVERVIEW: ANIMATIONS
CS354P

DR SARAH ABRAHAM



CS354P

ANIMATION PRINCIPLES
▸ Disney animators defined the “12 basic principles of animation” in 1981


▸ Widely used and discussed in the broader context of animation

▸ Squash and stretch


▸ Anticipation


▸ Staging


▸ Straight ahead action and pose 
to pose


▸ Follow through and 
overlapping action

▸ Slow in and out


▸ Arc


▸ Secondary action


▸ Timing


▸ Exaggeration


▸ Solid drawing


▸ Appeal



CS354P

ANIMATION CONSIDERATIONS

▸ Artists are concerned with incorporating animation principles into 
their work to create impactful animations


▸ Convey information to players


▸ Work within the frame-timings required in an interactive system


▸ Programmers are concerned with animation efficiency and pipeline


▸ Support animators via tools that allow efficient creation, import, and 
connection between animations


▸ Ensure animations are packed efficiently into memory and work 
even in lossy environments (e.g. networking)



CS354P

2D ANIMATION PROCESS

▸ Lead animators draw key frames in “pose-to-pose” 
animations


▸ Captures dynamic actions and camera position of the 
shot


▸ Determine number of frames needed between keyframes


▸ More junior animators draw in-between frames to 
interpolate between shots based on the timeline


▸ Process known as in-betweening or tweening



CS354P

EXAMPLE: SKULLGIRLS PIPELINE

https://www.youtube.com/watch?v=5VkDXBsIXso

https://www.youtube.com/watch?v=5VkDXBsIXso


CS354P

3D ANIMATION PROCESS

▸ Modeler creates 3D model composed of polygons


▸ Rigger connects these polygons to an underlying skeleton 
or rig that controls their movement


▸ Animator adds in animation controls to better constrain 
and control movements


▸ Animator creates key-framed poses and in-betweening is 
handled by the computer based on splines



CS354P

EXAMPLE: PROGRESSION SHOT REEL

https://www.youtube.com/watch?v=I_nK6rozuLc

https://www.youtube.com/watch?v=I_nK6rozuLc


CS354P

3D ANIMATION: FROM MODELING TO SCENE

▸ 3 minute video demonstrating the process


▸ https://www.youtube.com/watch?v=tGDAeCSPGCk

https://www.youtube.com/watch?v=tGDAeCSPGCk


CS354P

OTHER TYPES OF ANIMATIONS

▸ Driven animations 


▸ Blended animations


▸ Motion capture animations


▸ Dynamic animations



CS354P

SOME GDC TALKS ON ANIMATING...

▸ Making Fluid and Powerful Animations for Skullgirls


▸ https://www.youtube.com/watch?v=Mw0h9WmBlsw


▸ Guilty Gear Xrd’s Art Style: X Factor Between 2D and 3D


▸ https://www.youtube.com/watch?v=yhGjCzxJV3E

https://www.youtube.com/watch?v=Mw0h9WmBlsw
https://www.youtube.com/watch?v=yhGjCzxJV3E


CS354P

PIPELINE INTO ENGINE
▸ Animating in a game engine requires:


▸ A model


▸ A skeleton


▸ Animations


▸ UE5 can retarget models and animations to a skeleton, so possible to 
reuse skeletons between similar-shaped models


▸ Animations contain spline and skeleton position data based on 
keyframes and timings


▸ Can be modified somewhat in engine but generally want these to 
be as close to the final product as possible pre-engine



CS354P

ANIMATION STATE MACHINES

▸ Character animations are highly state dependent in games


▸ Associated with character state, such as current actions and 
context (health, weapon equipped, etc)


▸ Animations often blended during state transitions to create 
smoother changes


▸ Use of animation blueprints simplifies this process in Unreal


▸ Allows animator to work directly in the system without 
much direct assistance from a programmer



CS354P

ANIMATION BLUEPRINTS

▸ Works on skeletal meshes


▸ Includes an EventGraph and an AnimGraph


▸ EventGraph is the usual Blueprint graph


▸ Contains animation-related events to better control the animations


▸ Event Blueprint Update Animation called every frame


▸ AnimGraph evaluates the final animation pose to output


▸ Contains state machine functionality to determine the working pose


▸ Contains blend functionality to combine multiple animations



CS354P

CONNECTING ANIMATIONS TO GAME STATE

▸ Game state must be setup outside of the animation system by the 
game developers


▸ No built in state machine functionality outside of animations


▸ Animations should react to changes in state rather than driving them


▸ May need to create variables within the EventGraph for use in the state 
transitions


▸ Should be done through BP


▸ C++ should only be used to inform system about game and 
character state



CS354P

ANIMATION STATE MACHINES

▸ Same principle as any state machine


▸ Object exists in exactly one state at any time


▸ Object can transition from one state to another based 
on transition rules


▸ UE5 supports hierarchical animation states


▸ A state machine can be nested within another state 
machine



CS354P

UNREAL ANIMATION STATE MACHINES

▸ A flow chart of a very 
simple state machine



CS354P

UNREAL ANIMATION STATE MACHINES

▸ The states and transitions in AnimGraph



CS354P

TRANSITIONS

▸ Result is a boolean that specifies if a transition to a new 
state is available based on given rules


▸ Transition is directional and only applies from the given 
state

Enter a transition if the speed is not greater than 10



CS354P

THINKING ABOUT GAME STATE MACHINES MORE GENERALLY

▸ Enums and if-else statements are sufficient in small cases 
but become difficult to debug in large systems


▸ Note: enums still useful as handles for designers and 
artists to reason about the system


▸ Can build more complex functionality into a FSM manager


▸ Use of interfaces to define states and transitions


▸ Use of stacks to track previous states if it’s necessary to 
return to those



CS354P

FORWARD AND INVERSE KINEMATICS

▸ Kinematics is an area related to robotics and animation


▸ Forward Kinematics (FK) solves the problem by 
manipulating the joints directly (e.g. rotate your 
shoulder, extend your elbow, turn your wrist)


▸ Inverse Kinematics (IK) solves the inverse problem (e.g. 
what is the position and rotation required of my 
shoulder, elbow, and wrist to put my hand on this door 
knob?)



CS354P

INVERSE KINEMATICS

▸ Inverse Kinematics is preferred handling for animations


▸ Easier to reason about from an animation perspective


▸ Inter-related joints form a kinematic chain (e.g. a hand, 
elbow, and shoulder are all related)


▸ Work from the end of the kinematic chain (called the 
effector) and update the joint angles and positions of the 
associated joints (e.g. the elbow and shoulder) to 
determine the final pose



CS354P

UE5 AND IK

▸ UE5 supports IK solving in animations


▸ Allows actors to more correctly interact with uneven terrain/
climbing mechanics etc


▸ Requires:


▸ Use of traces in Actor setup to detect where to position IK effector


▸ Additional variables in AnimBlueprint to connect to the IK effector 
position in the Actor


▸ Use of 2-Bone IK nodes with the AnimBlueprint to solve for the 
updated pose



CS354P

2-BONE IK NODE

▸ Local space is model’s local coordinate system


▸ Component space is coordinate system relative to rig’s root bone


▸ Trace determines effector locations used in 2-Bone IK



CS354P

ANIMATING WITHOUT POSES

▸ Can create animations without animator-created poses


▸ Use of interpolation functions to determine a path/rate of change


▸ Useful on objects that require some animation but do not have the 
complexity of a character model


▸ Opening/closing doors


▸ Moving platforms


▸ Flickering lights


▸ etc...



CS354P

UE5 TIMELINES

▸ Timeline nodes provide a basic framework for interpolating 
values within BP


▸ Can be done via C++ but it makes working with the curves 
more difficult


▸ Exec node determines how timeline will play and what to do upon 
Timeline completion


▸ Curve determines interpolation for outgoing values


▸ Outgoing values passed into other nodes to change state (e.g. 
alpha, position, rotation, etc)



CS354P

TIMELINE NODE

▸ Designer can determine how and 
when the timeline plays within the 
Event Graph


▸ Calls to Update happen based on 
Tick


▸ Call to Finished happens at end of 
Timeline


▸ Outgoing parameters are 
modified based on the curve



CS354P

TIMELINE SETUP

▸ Curve controls interpolation of parameter values


▸ Other Timeline info can be set as well



CS354P

UE5 SEQUENCER

▸ Sequencer is the primary tool for creating in-game cinematics (i.e. 
scripted in-game cutscenes)


▸ Player may or may not be controllable during these sequences


▸ Useful in situations where there are complex animation interactions 
that are specific to a particular level or dramatic moment


▸ Dialogue sequences


▸ Scripted fight sequences


▸ Scripted NPC behavior (i.e. we want specific behaviors not 
controlled by the AI system)



CS354P

SEQUENCER EDITOR

▸ The sequencer editor is its own ecosystem


▸ Fairly complex to master


▸ Very similar to tools like Final Cut or Premiere



CS354P

SEQUENCER AND BLUEPRINTS

▸ Cinematics can mostly be placed in levels by designers via Blueprint


▸ May want an underlying C++ system to simplify this process in 
practice though...



CS354P

FURTHER READING

▸ Animation Blueprints [https://docs.unrealengine.com/en-
US/Engine/Animation/AnimBlueprints/index.html]


▸ Sequencer Quick Start [https://docs.unrealengine.com/en-
US/Engine/Sequencer/QuickStart/index.html]


▸ Sequencer and Blueprints [https://docs.unrealengine.com/
en-US/Engine/Sequencer/HowTo/
AnimateDynamicObjects/index.html]

https://docs.unrealengine.com/en-US/Engine/Animation/AnimBlueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/AnimBlueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Animation/AnimBlueprints/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/QuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/QuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/QuickStart/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/HowTo/AnimateDynamicObjects/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/HowTo/AnimateDynamicObjects/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/HowTo/AnimateDynamicObjects/index.html
https://docs.unrealengine.com/en-US/Engine/Sequencer/HowTo/AnimateDynamicObjects/index.html

