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ARTIFICIAL INTELLIGENCE (AI)

▸ Broad category of non-player-controller agents in the game 
that follow some set of rules 

▸ Bots in an arena shooter 

▸ Other cars in a racing game 

▸ Ally NPCs in an open world game 

▸ Enemies in an RPG 

▸ Computer-controlled opponents in board and card games
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A FINE LINE...

▸ The distinction between a scripted event and an AI system is a fine one 

▸ Very primitive AI can be hand-scripted 

▸ Limitations in technology make earlier AI much more simplistic than 
modern AI

Metal Gear Metal Gear Solid V
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THEN WHAT MAKES IT INTELLIGENT?

▸ Awareness of the state of the world 

▸ Understands concepts such as 
terrain, player state, and own 
current state 

▸ Ability to react in a way that reflects 
this understanding 

▸ Reacts in a way that the player 
can interpret as intelligent

Detroit: Become Human
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AI REQUIRES AT LEAST SOME COMPLEXITY OF BEHAVIORS
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THREE STAGES OF AI LOOP

▸ Sensing 

▸ Taking in information about the world state 

▸ Thinking 

▸ Determining best course of action based on the world state 

▸ Note that “best” is not necessarily mathematically optimal even in cases 
where we can calculate optimal 

▸ Acting 

▸ Performing the necessary steps to complete the chosen action 

▸ If action is not completable, agent may have to sense and think to 
determine new best action
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AI SENSING

▸ Agent retrieves information from the world 

▸ When to retrieve? 

▸ What to retrieve? 

▸ How to retrieve?
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AI POLLING AND EVENTS

▸ In polling model, agent examines the world state at a fixed rate 

▸ Looks for changes in the world and updates working 
knowledge accordingly 

▸ In event-driven model, agent receives information based on 
changes in the world state 

▸ Notified when a change in the world occurs and updates 
working knowledge accordingly 

▸ Can use a combination of both as necessary
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UNREAL: AI PERCEPTION COMPONENT

▸ Component that can be attached to a Pawn 

▸ Defines: 

▸ What the sense to listen for 

▸ Sensor parameterization 

▸ How to respond 

▸ Response handled through events
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UNREAL: AI PERCEPTION COMPONENT SENSES

▸ Multiple senses can be added to a component 

▸ Choose subset based on project requirements 

▸ Senses are: 

▸ Damage 

▸ Hearing 

▸ Sight 

▸ Touch 

▸ Team 

▸ Prediction



CS354P

UNREAL: ENVIRONMENTAL QUERY SYSTEM (EQS)

▸ Experimental system for collecting data from the 
environment to inform agent decision-making 

▸ Generator nodes collect information about the world state 

▸ Test nodes define how to process that information 

▸ Results of tests inform agent how to react 

▸ Example: Teammate AI looks for health pick-ups when the 
player’s health is low while remaining out of enemy’s line of 
sight 
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AI SENSING CONSIDERATIONS

▸ The world state of even smallish games is very large 

▸ Too expensive to poll frequently or query too much 
information 

▸ Determine what is important for the agent to know to create 
a compelling experience 

▸ Try to access this information only when necessary 

▸ e.g. When the player is on the other side of the map, turn 
off agents’ sensors
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AI THINKING

▸ Agent takes working knowledge about the world state and 
determines next action 

▸ What is the action? 

▸ Does this action require secondary actions? 

▸ How much time to process? 

▸ How to process?
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BEHAVIOR TREES

▸ Current industry standard data structure for working with AI 

▸ Hierarchical tree that encapsulates all possible behaviors based on 
world and agent state
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BEHAVIOR TREES NODES

▸ Nodes can be in the following states: 

▸ Succeeded, Failed, Running 

▸ Parent node executes child nodes in a given order 

▸ While a child is being processed, it and its parent are in the Running 
state 

▸ When a child fails or succeeds based on conditionals, it passes this 
information to its parent 

▸ Note that we are not completely traversing the tree in a time step 

▸ Can remain in a running sub-node for as long as it takes to resolve
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NODE TASKS

▸ Each node has a task or tasks, which define its behavior 

▸ Actions define what the agent can do, including playing animations, moving, 
interacting, etc 

▸ Conditionals determine if world/agent properties are in a specific state (often 
determine success or failure state of nodes) 

▸ Composites are parent nodes that have 1 or more child nodes 

▸ Can check conditionals, and determine what order to execute child nodes 
in, etc 

▸ Decorators can have one child 

▸ Modifies child behavior in some way (executes child multiple times, 
provides interrupts, continues to run child until it is successful, etc)
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BEHAVIOR TREE EXAMPLE

Example from Project Zomboid
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UE4 DEMO

https://www.youtube.com/watch?v=I60i4YLwqD8

https://www.youtube.com/watch?v=I60i4YLwqD8
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UNREAL BEHAVIOR TREES

▸ Nomenclature and structure is a little different from the “standard” behavior 
trees 

▸ Composite nodes are branch nodes 

▸ Determine basic rules of the tree 

▸ Task nodes are leaf nodes 

▸ Perform actions 

▸ Decorator nodes are attached to other nodes and determine if branch can be 
executed (functionally conditional nodes) 

▸ Service nodes are attached to composite nodes and can update agent’s world 
knowledge and can execute children in parallel
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UNREAL: BLACKBOARD

▸ World knowledge is everything that the agent knows 

▸ Knowledge can be stored in a Blackboard as keys for accessible reading 
and writing 

▸ Knowledge can be local to one agent or a squad of agents 

▸ Changes in keys can trigger events 

▸ Behavior trees in UE5 are event driven rather than tick-based 

▸ Calculations can be cached for better responsiveness 

▸ Centralized location of data results in fewer levels of indirection to access 
data
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AI ACTIONS

▸ Once a decision has been reached, the agent must perform 
the action 

▸ Update agent state 

▸ Play associated agent animation 

▸ Perform associated agent action 

▸ One important action is navigation 

▸ How do we convincingly move the AI throughout the world?
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NAVIGATION

▸ Agents use pathing algorithms to navigate through the world 

▸ Problem: how do I get from point A to point B? 

▸ Constraints: respect obstacles and emulate human choices
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A TYPE OF GRAPH PROBLEM

Node-based

Grid-based
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A* PATHFINDING

▸ De facto algorithm for agent navigation in games 

▸ Considers two functions to optimize: 

▸ g(n): Current best cost for getting to a node from the 
start 

▸ h(n): Current best estimate for how much more it will 
cost to reach the goal from a node 

▸ Heuristic used for h(n) determines optimality and efficiency
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A* CHALLENGES

▸ Expensive to do across large areas 

▸ Use of waypoints and hierarchical planning to reduce 
state complexity 

▸ Must consider how to replan if world state changes 

▸ Player or other agents change position 

▸ World contains dynamic or destructible obstacles 

▸ Must store data efficiently to handle multiple agents
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NAVMESHES

▸ Navigation meshes (navmeshes) aid in the computation of paths 
for AI agents 

▸ Create a polygon mesh that defines where agents can walk 

▸ Polygons provide nodes for calculating A* 

▸ Can traverse the polygon itself along a linear path 

▸ Simplifies collision detection (if placed properly, ensures agent 
will not collide with geometry) 

▸ Generated automatically or hand-created by designer
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UE5 NAVMESHES

▸ Provides all basic features for agent traversal 

▸ Can be placed in editor (no need for lower level programming) 

▸ Challenge is for the designer to make it compelling and 
functional
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CROWD SIMULATION

▸ Large number of agents navigating world, avoiding each other 
and player, and engaging in different goals 

▸ Often treated as a “particle system” using rules and forces

Cyberpunk 2077
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FURTHER READING

▸ What is a Behavior Tree? <https://opsive.com/support/
documentation/behavior-designer/what-is-a-behavior-tree/> 

▸ Behavior Trees for AI: How they work<https://www.gamasutra.com/
blogs/ChrisSimpson/20140717/221339/
Behavior_trees_for_AI_How_they_work.php> 

▸ UE4 Behavior Tree Documentation <https://docs.unrealengine.com/
en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html> 

▸ UE4 NavMeshes <https://docs.unrealengine.com/en-US/Resources/
ContentExamples/NavMesh/index.html>

https://opsive.com/support/documentation/behavior-designer/what-is-a-behavior-tree/
https://opsive.com/support/documentation/behavior-designer/what-is-a-behavior-tree/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html

