
OVERVIEW: AI
CS354P 
DR SARAH ABRAHAM



CS354P

ARTIFICIAL INTELLIGENCE (AI)

▸ Broad category of non-player-controller agents in the game 
that follow some set of rules 

▸ Bots in an arena shooter 

▸ Other cars in a racing game 

▸ Ally NPCs in an open world game 

▸ Enemies in an RPG 

▸ Computer-controlled opponents in board and card games



CS354P

A FINE LINE...

▸ The distinction between a scripted event and an AI system is a fine one 

▸ Very primitive AI can be hand-scripted 

▸ Limitations in technology make earlier AI much more simplistic than 
modern AI

Metal Gear Metal Gear Solid V



CS354P

THEN WHAT MAKES IT INTELLIGENT?

▸ Awareness of the state of the world 

▸ Understands concepts such as 
terrain, player state, and own 
current state 

▸ Ability to react in a way that reflects 
this understanding 

▸ Reacts in a way that the player 
can interpret as intelligent

Detroit: Become Human



CS354P

AI REQUIRES AT LEAST SOME COMPLEXITY OF BEHAVIORS



CS354P

THREE STAGES OF AI LOOP

▸ Sensing 

▸ Taking in information about the world state 

▸ Thinking 

▸ Determining best course of action based on the world state 

▸ Note that “best” is not necessarily mathematically optimal even in cases 
where we can calculate optimal 

▸ Acting 

▸ Performing the necessary steps to complete the chosen action 

▸ If action is not completable, agent may have to sense and think to 
determine new best action



CS354P

AI SENSING

▸ Agent retrieves information from the world 

▸ When to retrieve? 

▸ What to retrieve? 

▸ How to retrieve?



CS354P

AI POLLING AND EVENTS

▸ In polling model, agent examines the world state at a fixed rate 

▸ Looks for changes in the world and updates working 
knowledge accordingly 

▸ In event-driven model, agent receives information based on 
changes in the world state 

▸ Notified when a change in the world occurs and updates 
working knowledge accordingly 

▸ Can use a combination of both as necessary



CS354P

UNREAL: AI PERCEPTION COMPONENT

▸ Component that can be attached to a Pawn 

▸ Defines: 

▸ What the sense to listen for 

▸ Sensor parameterization 

▸ How to respond 

▸ Response handled through events



CS354P

UNREAL: AI PERCEPTION COMPONENT SENSES

▸ Multiple senses can be added to a component 

▸ Choose subset based on project requirements 

▸ Senses are: 

▸ Damage 

▸ Hearing 

▸ Sight 

▸ Touch 

▸ Team 

▸ Prediction



CS354P

UNREAL: ENVIRONMENTAL QUERY SYSTEM (EQS)

▸ Experimental system for collecting data from the 
environment to inform agent decision-making 

▸ Generator nodes collect information about the world state 

▸ Test nodes define how to process that information 

▸ Results of tests inform agent how to react 

▸ Example: Teammate AI looks for health pick-ups when the 
player’s health is low while remaining out of enemy’s line of 
sight 



CS354P

AI SENSING CONSIDERATIONS

▸ The world state of even smallish games is very large 

▸ Too expensive to poll frequently or query too much 
information 

▸ Determine what is important for the agent to know to create 
a compelling experience 

▸ Try to access this information only when necessary 

▸ e.g. When the player is on the other side of the map, turn 
off agents’ sensors



CS354P

AI THINKING

▸ Agent takes working knowledge about the world state and 
determines next action 

▸ What is the action? 

▸ Does this action require secondary actions? 

▸ How much time to process? 

▸ How to process?



CS354P

BEHAVIOR TREES

▸ Current industry standard data structure for working with AI 

▸ Hierarchical tree that encapsulates all possible behaviors based on 
world and agent state



CS354P

BEHAVIOR TREES NODES

▸ Nodes can be in the following states: 

▸ Succeeded, Failed, Running 

▸ Parent node executes child nodes in a given order 

▸ While a child is being processed, it and its parent are in the Running 
state 

▸ When a child fails or succeeds based on conditionals, it passes this 
information to its parent 

▸ Note that we are not completely traversing the tree in a time step 

▸ Can remain in a running sub-node for as long as it takes to resolve



CS354P

NODE TASKS

▸ Each node has a task or tasks, which define its behavior 

▸ Actions define what the agent can do, including playing animations, moving, 
interacting, etc 

▸ Conditionals determine if world/agent properties are in a specific state (often 
determine success or failure state of nodes) 

▸ Composites are parent nodes that have 1 or more child nodes 

▸ Can check conditionals, and determine what order to execute child nodes 
in, etc 

▸ Decorators can have one child 

▸ Modifies child behavior in some way (executes child multiple times, 
provides interrupts, continues to run child until it is successful, etc)



CS354P

BEHAVIOR TREE EXAMPLE

Example from Project Zomboid



CS354P

UE4 DEMO

https://www.youtube.com/watch?v=I60i4YLwqD8

https://www.youtube.com/watch?v=I60i4YLwqD8


CS354P

UNREAL BEHAVIOR TREES

▸ Nomenclature and structure is a little different from the “standard” behavior 
trees 

▸ Composite nodes are branch nodes 

▸ Determine basic rules of the tree 

▸ Task nodes are leaf nodes 

▸ Perform actions 

▸ Decorator nodes are attached to other nodes and determine if branch can be 
executed (functionally conditional nodes) 

▸ Service nodes are attached to composite nodes and can update agent’s world 
knowledge and can execute children in parallel



CS354P

UNREAL: BLACKBOARD

▸ World knowledge is everything that the agent knows 

▸ Knowledge can be stored in a Blackboard as keys for accessible reading 
and writing 

▸ Knowledge can be local to one agent or a squad of agents 

▸ Changes in keys can trigger events 

▸ Behavior trees in UE5 are event driven rather than tick-based 

▸ Calculations can be cached for better responsiveness 

▸ Centralized location of data results in fewer levels of indirection to access 
data



CS354P

AI ACTIONS

▸ Once a decision has been reached, the agent must perform 
the action 

▸ Update agent state 

▸ Play associated agent animation 

▸ Perform associated agent action 

▸ One important action is navigation 

▸ How do we convincingly move the AI throughout the world?



CS354P

NAVIGATION

▸ Agents use pathing algorithms to navigate through the world 

▸ Problem: how do I get from point A to point B? 

▸ Constraints: respect obstacles and emulate human choices



CS354P

A TYPE OF GRAPH PROBLEM

Node-based

Grid-based



CS354P

A* PATHFINDING

▸ De facto algorithm for agent navigation in games 

▸ Considers two functions to optimize: 

▸ g(n): Current best cost for getting to a node from the 
start 

▸ h(n): Current best estimate for how much more it will 
cost to reach the goal from a node 

▸ Heuristic used for h(n) determines optimality and efficiency



CS354P

A* CHALLENGES

▸ Expensive to do across large areas 

▸ Use of waypoints and hierarchical planning to reduce 
state complexity 

▸ Must consider how to replan if world state changes 

▸ Player or other agents change position 

▸ World contains dynamic or destructible obstacles 

▸ Must store data efficiently to handle multiple agents



CS354P

NAVMESHES

▸ Navigation meshes (navmeshes) aid in the computation of paths 
for AI agents 

▸ Create a polygon mesh that defines where agents can walk 

▸ Polygons provide nodes for calculating A* 

▸ Can traverse the polygon itself along a linear path 

▸ Simplifies collision detection (if placed properly, ensures agent 
will not collide with geometry) 

▸ Generated automatically or hand-created by designer



CS354P

UE5 NAVMESHES

▸ Provides all basic features for agent traversal 

▸ Can be placed in editor (no need for lower level programming) 

▸ Challenge is for the designer to make it compelling and 
functional



CS354P

CROWD SIMULATION

▸ Large number of agents navigating world, avoiding each other 
and player, and engaging in different goals 

▸ Often treated as a “particle system” using rules and forces

Cyberpunk 2077



CS354P

FURTHER READING

▸ What is a Behavior Tree? <https://opsive.com/support/
documentation/behavior-designer/what-is-a-behavior-tree/> 

▸ Behavior Trees for AI: How they work<https://www.gamasutra.com/
blogs/ChrisSimpson/20140717/221339/
Behavior_trees_for_AI_How_they_work.php> 

▸ UE4 Behavior Tree Documentation <https://docs.unrealengine.com/
en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html> 

▸ UE4 NavMeshes <https://docs.unrealengine.com/en-US/Resources/
ContentExamples/NavMesh/index.html>

https://opsive.com/support/documentation/behavior-designer/what-is-a-behavior-tree/
https://opsive.com/support/documentation/behavior-designer/what-is-a-behavior-tree/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://docs.unrealengine.com/en-US/Engine/ArtificialIntelligence/BehaviorTrees/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html
https://docs.unrealengine.com/en-US/Resources/ContentExamples/NavMesh/index.html

