
OVERVIEW: NETWORKING

CS354P
DR SARAH ABRAHAM

CS354P

NETWORKING IN GAMES

▸ Many games are networked --
even single-player experiences

▸ What sort of data are is being
transmitted?

▸ Where does the data come
from?

▸ How is the data being
processed?

CS: GO

Final Fantasy XIV

Death Stranding

CS354P

PERSISTENT VS TRANSIENT WORLDS

▸ World data can either be generated
per-session (transient) or stored
between sessions (persistent)

▸ Choice depends on type of game/
experience and studio’s budget

▸ Transient games can have one of the
players act as a host

▸ Persistent games require a dedicated
server(s)

Crowfall

CS354P

CLIENT-SERVER MODEL

▸ Common model for deciding how to
distribute data in both persistent and
transient worlds

▸ Server is the authority on game state

▸ Decides what the clients see in the game

▸ Determines what and how client actions
can change the game state

▸ In transient games, the server can be the
player’s system that all clients connect to

CS354P

PEER-TO-PEER (P2P) MODEL

▸ Model for deciding how to distribute data
in transient worlds

▸ No one peer is the authority

▸ Resource management distributed
across peers

▸ Each peer determines how other peers
are influencing game state accordingly

▸ Useful in genres like fighting games
where both peers have equal authority
and games have limited world state

CS354P

GAME SERVERS

▸ We will focus on client-server setups as they are more common in
games

▸ In the client-server model, game servers manage final version of
world state

▸ Several ways to manage this:

▸ Perform all calculations on server

▸ Perform some calculations on server and some on clients

▸ Perform all calculations on client and allow server to determine
“ground truth” from these calculations

CS354P

PERFORMING ALL CALCULATIONS ON CLIENTS?

▸ Not a great idea

▸ Too much security risk

▸ All the overhead of a P2P network with none of the
benefits

▸ Not really done in practice

CS354P

PERFORMING ALL CALCULATIONS ON SERVER?

▸ At first glance, this is the safest and easiest way to manage game state

▸ All of world state (including player information) is replicated from
the server

▸ i.e. Clients see a copied version of the current world state

▸ When a client provides controller input, input is sent to server to be
processed

▸ Server performs actions based on valid input, updates its world
state, then sends this updated data to all clients

▸ What problems arise from this setup?

CS354P

LATENCY AND LAG

‣ Latency is the time it takes from starting to do something to finishing it

‣ Lag in user interaction is the latency from when a user provides input to the
time they see the response

‣ Ideally we want to process user input every ~16ms (60Hz) or more

‣ Worst case (i.e. consoles) we process input at a fixed rate of ~33ms (30Hz)

‣ Assumes humans see at around 30Hz* ensuring good responsiveness even
if the game frame is out of sync with our eye “frame”

‣ Handling player inputs on the server introduces network latency into the
existing lag of user interaction

‣ Will not be responsive

*This is a gross simplification of human vision but it works well enough in practice

CS354P

HOW TO HANDLE PLAYER INPUT LATENCY?

▸ Allow client to perform latency-sensitive actions
autonomously

▸ Action performed on client before being verified on the
server

▸ If server and client agree, action is replicated to all other
clients

▸ If server and client disagree, server adjusts client’s world
state to match the server state

CS354P

UE5: CHARACTER MOVEMENT COMPONENT

▸ Uses three network roles:

▸ Autonomous Proxy is character on owning client’s
machine

▸ Authority is character on the server

▸ Simulated Proxy is character on non-owning client
machines

▸ Replication happens at 30Hz

CS354P

AUTONOMOUS PROXY CHARACTER

▸ Locally controlled by owning player

▸ Runs PerformMovement locally to determine physical
logic of character

▸ Highly responsive with no network latency

▸ Stores movement data in FSavedMove_Character and
queues these into SavedMoves

▸ Sends condensed version of data to server

CS354P

AUTHORITY CHARACTER

▸ Updated by server when server receives SavedMoves

▸ Server checks updated position and orientation of character against the
client’s reported position and orientation

▸ If values match, server informs owning client their movement was valid

▸ If values do not match, server sends corrections to owning client to fix
autonomous proxy’s values

▸ Autonomous proxy reproduces authority’s movements and retraces steps
based on SavedMoves

▸ Autonomous proxy only removes moves from SavedMoves after
movement is successfully resolved

CS354P

SIMULATED PROXY CHARACTER

▸ Movement information is replicated from server

▸ Used for all characters, both AI (controlled on server) and
players (autonomous proxies)

▸ Network smoothing used to clean up motion on client’s
end

▸ Interpolates between current location and target
location using SmoothClientPosition

CS354P

HOW DO MACHINES COMMUNICATE?

CS354P

RPCS

▸ Remote Procedure Calls

▸ Allows for the execution of code in a different address
space as though it were a local call

▸ Can use for both remote and local calls

▸ Message-passing mechanism hidden

▸ Remote and local calls can be handled based on role

CS354P

USING NETWORKING IN UNREAL

▸ Must include “Net/UnrealNetwork.h”

▸ Include Replicated keyword in UPROPERTY to replicate an Actor’s property

▸ Set bReplicates in the replicating Actor to true

▸ Implement function
GetLifetimeReplicatedProps(TArray<FLifetimeProperty>&
OutLifetimeProps) in replicating Actor

▸ Add DOREPLIFETIME(AMyActor, PropertyName); for each property
being replicated

▸ UE5 handles replicated pointers using GUIDs (Globally Unique Identifiers)

▸ Server assigns FNetworkGUID value and clients are notified

CS354P

REPNOTIFY

▸ Allows execution of a function when a variable’s value changes

▸ Each property specifies the function it will call

▸ Specify with ReplicatedUsing = OnRep_PropertyName
instead of Replicated in UPROPERTY

▸ Create OnRep_PropertyName() function that will be called

▸ This will specify what should happen when the value is
changed

▸ Can update local (non-replicated) assets using these

CS354P

UE5 NETWORKING FUNCTIONS

▸ UFUNCTION must specify who is executing the function and how reliable
the function needs to be

▸ Server only executes the code on the server

▸ Client only executes the code on the owning client

▸ NetMulticast executed on the server will also execute on all clients

▸ Additional options here: https://docs.unrealengine.com/5.2/en-US/
function-specifiers/

▸ Functions must use a _Implementation thunk

▸ Server must have specifier WithValidation and implement an
additional _Validate function

https://docs.unrealengine.com/5.2/en-US/function-specifiers/
https://docs.unrealengine.com/5.2/en-US/function-specifiers/

CS354P

NETWORKING FUNCTION EXAMPLE: HEADER

UFUNCTION(Server, Reliable, WithValidation,
BlueprintCallable)

 void Server_myFunction();

 void Server_myFunction_Implementation();

 bool Server_myFunction_Validate();

Reliably calls Server_myFunction(). Can be called
from any owning client but will only perform the
function on the server. Can be called from Blueprints.

CS354P

NETWORKING FUNCTION EXAMPLE: CPP

void AMyActor::Server_myFunction_Implementation()

{

 //Execute what the server should do here

}

bool AMyActor::Server_myFunction_Validate()

{

 //Perform necessary validation of function here

 return true;

} Only implement the _Implementation() thunk. Must
include _Validate() to work.

CS354P

NETWORKING FUNCTION EXAMPLE: HEADER

UFUNCTION(Unreliable, Netmulticast)

 void Netmulticast_myFunction();

 void Netmulticast_myFunction_Implementation();

Unreliably calls Netmulticast_myFunction(). If called
from the server, will execute on all clients.

CS354P

NETWORKING FUNCTION EXAMPLE: CPP

void
AMyActor::Netmulticast_myFunction_Implementation()

{

 //Execute what the server and all clients should
do here

}

Only implement the _Implementation() thunk.

CS354P

WHAT TO REPLICATE?

▸ Very challenging software architecture question!

▸ For any project that may require networking, you want to build networking in as soon as possible

▸ Must choose what will be controlled on the server versus the clients

▸ Common things the server replicates:

▸ The world itself

▸ Interactables in the world

▸ Playable characters

▸ Common things to run locally:

▸ GUI and HUD

▸ Certain animations

▸ Anything only relevant to the owning player

CS354P

WHEN TO REPLICATE RELIABLY?

▸ Replicate as unreliably as possible

▸ State-related changes should always be replicated
reliably

▸ Anything cosmetic or frequently sent can be replicated
unreliably

▸ Only replicate what is important to the clients

▸ Do not replicate world or player information that will not
effect the client

CS354P

RPCS AND OWNERSHIP

▸ Ownership determines how and where these functions are called

▸ If Actor is owned by server, RPC is called on server

▸ If Actor is owned by a client, RPC needs to know which client

▸ PlayerController can be an owning connection of an Actor (e.g. a
Pawn)

▸ When Pawn is possessed by PlayerController, it is owned by that
PlayerController’s connection

▸ No longer owned by PlayerController’s connection when
unpossessed

CS354P

ROLE AND REMOTE ROLE

▸ Actors have a Role and a RemoteRole property

▸ Roles are: ROLE_Authority, ROLE_SimulatedProxy and ROLE_AutonomousProxy

▸ Simulated Proxy used for Actors controlled by server (client updates values
accordingly)

▸ Autonomous Proxy used for Actors controlled by a player (client considers values
from input in addition to values passed down by server)

▸ Note: Roles will change depending on who is inspecting the values

▸ Example: Actor is owned by server and simulation is passed to clients

▸ On server, sees Role == ROLE_Authority and RemoteRole ==
ROLE_SimulatedProxy

▸ On client, sees Role == ROLE_SimulatedProxy and RemoteRole ==
ROLE_Authority

CS354P

UE5 REPLICATION GRAPHS

▸ Designed to handle the large number of players and Actors in Fortnite without
taxing CPU as heavily or having a laggy experience due to less frequent updates

▸ Replication Graph contains nodes with information on how/when to send data
to clients about Actors

▸ Do clients ever need to receive updates on this Actor?

▸ When will specific clients need to receive updates on this Actor and how
frequently?

▸ Graph system designed to be flexible to suit the needs of the project

▸ Consider when and how replication occurs and create data structure
accordingly

CS354P

THINK ABOUT THE REPLICATION CONSIDERATIONS IN THE SCENE BELOW...

