CS354P
DR SARAH ABRAHAM

OVERVIEW: NETWORKING




CS354P

NETWORKING IN GAMES

» Many games are networked --

even single-player experiences
CS: GO

» What sort of data are is being
transmitted?

» Where does the data come

from? Final Fantasy XIV

» How is the data being
processed?

Death Stranding




CS354P

PERSISTENT VS TRANSIENT WORLDS

» World data can either be generated
per-session (transient) or stored
between sessions (persistent)

» Choice depends on type of game/
experience and studio’s budget

» Transient games can have one of the
players act as a host

» Persistent games require a dedicated
server(s)

Crowfall



CS354P

CLIENT-SERVER MODEL

» Common model for deciding how to
distribute data in both persistent and
transient worlds

Central Server

‘ » Server is the authority on game state

Client / Server

» Decides what the clients see in the game

\\ Clients
@ ﬁ » Determines what and how client actions

can change the game state

» In transient games, the server can be the
player’s system that all clients connect to



CS354P

PEER-TO-PEER (P2P) MODEL

» Model for deciding how to distribute data
in transient worlds

g P NO ONe peer is the authority

Clients

+ \ » Resource management distributed
across peers

» Each peer determines how other peers
are influencing game state accordingly

Peer to Peer » Useful in genres like fighting games

where both peers have equal authority
and games have limited world state



CS354P

GAME SERVERS

» We will focus on client-server setups as they are more common in
games

» In the client-server model, game servers manage final version of
world state

» Several ways to manage this:
» Perform all calculations on server
» Perform some calculations on server and some on clients

» Perform all calculations on client and allow server to determine
“ground truth” from these calculations



CS354P

PERFORMING ALL CALCULATIONS ON CLIENTS?

» Not a great idea
» Too much security risk

» All the overhead of a P2P network with none of the
benefits

» Not really done in practice



CS354P

PERFORMING ALL CALCULATIONS ON SERVER?

» At first glance, this is the safest and easiest way to manage game state

» All of world state (including player information) is replicated from
the server

» i.e. Clients see a copied version of the current world state

» When a client provides controller input, input is sent to server to be
processed

» Server performs actions based on valid input, updates its world
state, then sends this updated data to all clients

» What problems arise from this setup?



CS354P

LATENCY AND LAG

Latency is the time it takes from starting to do something to finishing it

Lag in user interaction is the latency from when a user provides input to the
time they see the response

Ideally we want to process user input every ~16ms (60Hz) or more
> Worst case (i.e. consoles) we process input at a fixed rate of ~33ms (30Hz)

> Assumes humans see at around 30Hz* ensuring good responsiveness even
if the game frame is out of sync with our eye “frame”

Handling player inputs on the server introduces network latency into the
existing lag of user interaction

> Will not be responsive

*This is a gross simplification of human vision but it works well enough in practice



CS354P

HOW TO HANDLE PLAYER INPUT LATENCY?

» Allow client to perform latency-sensitive actions
autonomously

» Action performed on client before being verified on the
server

» If server and client agree, action is replicated to all other
clients

» If server and client disagree, server adjusts client’s world
state to match the server state



CS354P

UES: CHARACTER MOVEMENT COMPONENT

» Uses three network roles:

» Autonomous Proxy is character on owning client’s
machine

» Authority is character on the server

» Simulated Proxy is character on non-owning client
machines

» Replication happens at 30Hz



CS354P

AUTONOMOUS PROXY CHARACTER

» Locally controlled by owning player

» Runs PerformMovement locally to determine physical
logic of character

» Highly responsive with no network latency

» Stores movement data in FSavedMove Character and
queues these into SavedMoves

» Sends condensed version of data to server



CS354P

AUTHORITY CHARACTER

» Updated by server when server receives SavedMoves

» Server checks updated position and orientation of character against the
client’s reported position and orientation

» If values match, server informs owning client their movement was valid

» If values do not match, server sends corrections to owning client to fix
autonomous proxy'’s values

» Autonomous proxy reproduces authority’s movements and retraces steps
based on SavedMoves

» Autonomous proxy only removes moves from SavedMoves after
movement is successfully resolved



CS354P

SIMULATED PROXY CHARACTER

» Movement information is replicated from server

» Used for all characters, both Al (controlled on server) and
players (autonomous proxies)

» Network smoothing used to clean up motion on client’s
end

» Interpolates between current location and target
location using SmoothClientPosition



CS354P

HOW DO MACHINES COMMUNICATE?



CS354P

RPCS

» Remote Procedure Calls

» Allows for the execution of code in a different address
space as though it were a local call

» Can use for both remote and local calls
» Message-passing mechanism hidden

» Remote and local calls can be handled based on role



CS354P

USING NETWORKING IN UNREAL

» Mustinclude “Net/UnrealNetwork.h”
» Include Replicated keyword in UPROPERTY to replicate an Actor’s property
» Set bReplicates in the replicating Actor to true

» Implement function
GetLifetimeReplicatedProps (TArray<FLifetimeProperty>&
OutLifetimeProps) in replicating Actor

» Add DOREPLIFETIME (AMyActor, PropertyName) ; for each property
being replicated

» UE5 handles replicated pointers using GUIDs (Globally Unique Identifiers)

» Server assigns FNetworkGUID value and clients are notified



CS354P

REPNOTIFY

» Allows execution of a function when a variable’s value changes

» Each property specifies the function it will call

» Specify with ReplicatedUsing = OnRep PropertyName
instead of Replicated in UPROPERTY

» Create OnRep PropertyName () function that will be called

» This will specify what should happen when the value is
changed

» Can update local (non-replicated) assets using these



CS354P

UES NETWORKING FUNCTIONS

» UFUNCTION must specify who is executing the function and how reliable
the function needs to be

» Server only executes the code on the server
» Client only executes the code on the owning client
» NetMulticast executed on the server will also execute on all clients

» Additional options here: https://docs.unrealengine.com/5.2/en-US/
function-specifiers/

» Functions mustuse a Implementation thunk

» Server must have specifier Withvalidation and implement an
additional validate function


https://docs.unrealengine.com/5.2/en-US/function-specifiers/
https://docs.unrealengine.com/5.2/en-US/function-specifiers/

CS354P

NETWORKING FUNCTION EXAMPLE: HEADER

UFUNCTION(Server, Reliable, WithValidation,
BlueprintCallable)

void Server_myFunction();

void Server_myFunction_Implementation();

bool Server_myFunction_Validate();

Reliably calls Server_myFunction(). Can be called

from any owning client but will only perform the
function on the server. Can be called from Blueprints.




CS354P

NETWORKING FUNCTION EXAMPLE: CPP

void AMyActor::Server myFunction Implementation()

{

/ /Execute what the server should do here

bool AMyActor::Server myFunction Validate()

{

//Perform necessary validation of function here

return true;

) Only implement the _Implementation() thunk. Must

include Validate() to work.




CS354P

NETWORKING FUNCTION EXAMPLE: HEADER

UFUNCTION(Unreliable, Netmulticast)
void Netmulticast_myFunction();

void Netmulticast_myFunction_Implementation();

Unreliably calls Netmulticast_myFunction(). If called

from the server, will execute on all clients.




CS354P

NETWORKING FUNCTION EXAMPLE: CPP

volid
AMyActor::Netmulticast myFunction Implementation()

{

//Execute what the server and all clients should
do here

}

Only implement the _Implementation() thunk.




CS354P

WHAT T0 REPLICATE?

» Very challenging software architecture question!
» For any project that may require networking, you want to build networking in as soon as possible
» Must choose what will be controlled on the server versus the clients
» Common things the server replicates:
» The world itself
» Interactables in the world
» Playable characters
» Common things to run locally:
» GUl and HUD
» Certain animations

» Anything only relevant to the owning player



CS354P

WHEN TO REPLICATE RELIABLY?

» Replicate as unreliably as possible

» State-related changes should always be replicated
reliably

» Anything cosmetic or frequently sent can be replicated
unreliably

» Only replicate what is important to the clients

» Do not replicate world or player information that will not
effect the client



CS354P

RPCS AND OWNERSHIP

» Ownership determines how and where these functions are called
» If Actor is owned by server, RPC is called on server
» If Actor is owned by a client, RPC needs to know which client

» PlayerController can be an owning connection of an Actor (e.g. a
Pawn)

» When Pawn is possessed by PlayerController, it is owned by that
PlayerController’'s connection

» No longer owned by PlayerController’s connection when
unpossessed



CS354P

ROLE AND REMOTE ROLE

» Actors have a Role and a RemoteRole property
» Roles are: ROLE Authority, ROLE SimulatedProxy and ROLE AutonomousProxy

» Simulated Proxy used for Actors controlled by server (client updates values
accordingly)

» Autonomous Proxy used for Actors controlled by a player (client considers values
from input in addition to values passed down by server)

» Note: Roles will change depending on who is inspecting the values
» Example: Actor is owned by server and simulation is passed to clients

» On server, sees Role == ROLE Authority and RemoteRole ==
ROLE SimulatedProxy

» On client, seesRole == ROLE SimulatedProxy and RemoteRole ==
ROLE Authority



CS354P

UES REPLICATION GRAPHS

» Designed to handle the large number of players and Actors in Fortnite without
taxing CPU as heavily or having a laggy experience due to less frequent updates

» Replication Graph contains nodes with information on how/when to send data
to clients about Actors

» Do clients ever need to receive updates on this Actor?

» When will specific clients need to receive updates on this Actor and how
frequently?

» Graph system designed to be flexible to suit the needs of the project

» Consider when and how replication occurs and create data structure
accordingly



CS354P

THINK ABOUT THE REPLICATION CONSIDERATIONS IN THE SCENE BELOW...




