CS354P

OVERVIEW: GUIS

ABILITY TREE

Regroup

Creating a Soul Link restores 1 Life Cell

O

@ Navigate m Select ’) Back

CS354P

WHAT IS IN A GUI?

» Not just art assets!
» GUIs display important information for the player:
» Character status
» Enemy status
» Leveling information
» Map information

» Out of game menus

CS354P

DESIGNING A GUI

» GUI layouts should be:
» Intuitive to navigate
» Intuitive to understand
» Intuitive to access
» This is harder than it sounds
» An entire area of design is dedicated to interaction
» You will probably get it wrong the first time

» lterate GUI design via user testing

CS354P

GUI TYPES: MENUS

» Outside of game play options, modes, and information

r
ERJACKET
A biker jacket that will keep the wearer safe and
£ sound under even the harshest conditions. A
SU-SNEAKING SUIT : favorite of "The Man Who Sold the World."

-
L0 .,IT

* Kk — — —
BATTLE DRESS

.*___
PARASITE SUIT

BLUE URBAN
STANDARD

w ANIMALS
" A STANDARD

Usage Requirements

Select a uniform.
€ Viewer ON/OFF

Metal Gear Solid V

CS354P

GUI TYPES: HUDS

» In-game persistent display of information

Final Fantasy XIV

CS354P

GUI TYPES: DIEGETIC DISPLAYS

» In-game display of information incorporated into world

| " ' 3
r s T
' 1 2, | |

o & INVENTORY

[WEAPONS | ¢ ==

ST < s T : 2. 4oy
- - B

s
@® LARGE MED PR.K

#NRVIGATE @SELECT OEXIT , \

Dead Space

CS354P

GUI TYPES: GUI-LESS

» No in- game display of information — purely contextual

Last Guardian

CS354P

GUI PROGRAMMING

» Based on the above, what can we determine about GUI
programming?

» GUI programming is:
» Interdisciplinary in nature
» Highly event-driven
» Highly state-based
» Un-performant if implemented poorly

» Notoriously “spaghetti”

CS354P

GUIS IN UNREAL

» Slate is UE5’s custom Ul programming framework
» Unreal editor is built in Slate
» Written in C++
» Can customize editor panels or be used in-game
» Primarily used for tools-building
» UMG (Unreal Motion Graphics) is UES’s visual Ul authoring tool
» Built using Widget Blueprints

» Blueprint includes layout mode and event graph mode for reacting
to inputs

CS354P

WIDGET BLUEPRINTS

» Similar concept to Animation Blueprints

» Specialized graph and visualization functionality built for user interface
elements

» Built-in functionality for:
» Constraints
» Animations
» Events
» Scaling
» Styling

» etc...

CS354P

WIDGET BLUEPRINT EDITOR

1“[’ '_‘_‘= NewWdaetE uenrint
File Edit Asset View Debug Window Help ' User Widgeth BRI

3# - ! /@ ﬂ# a =4 » S No debug object selected v | gDeS[gner>-.ﬁ.Graph

Compile Save FindinCB Search = Class Settings [GIEESIIEIANIE] Play Debug Filter

M My Blueprint ma EventGraph
+ Add New ~

4Graphs

== EventGraph . .

tons 1 Right-Click to Create New Nodes.
Macros

Variables

Event Dispatchers

5 Details

4 Style

> Color and| N
D Foregroun MM %3 Inherit
4 Behavior

Is Enablec
Tool T T (D
Visibility
2
4 Layout
sot | [T
4 Render Transform
[Transforn

I Diunt v o s lv oc |

CS354P

WHAT ARE WIDGETS?

» Widgets are the common GUI elements used to convey information and provide
events

& Palette
» UMG widget examples: Sxancly Daleite
4 Common
» Border S
Button
» Button v, Check Box
2| Image
) |mage Named Slot
50 Progress Bar
» Checkbox o
7] Text
Text Box
¢ TeXt ' Extra
" Input
) Slider * Optimization
' Panel
» etc... ' Primitive

» Special Effects

 Uncategorized

CS354P

HOW CAN WE BE RESOLUTION INDEPENDENT?

» Resolve widget placement using constraints

» Layout can be treated as a system of linear equations and constraints
» Treat as an optimization problem (minimize constraint violations)
» Resolve using a linear objective function

» Soft constraints (i.e. requested constraints that can be violated if
necessary to find a solution) can be violated in non-uniform ways

» Quadratic objective functions better handle the minimization of error
» Constraint solving can decrease responsiveness

» Constraint solving allows for static analysis of violations

CS354P

ANCHORS

» Anchors define desired
position within a Canvas
Panel

» Normalized between 0
and 1 for min and max

» Origin (0, 0) is in upper
left corner

» Can place anchor
manually within the scene

Widget anchored to upper left corner

CS354P

SAFE ZONES

» Specialized widgets that
handle “unsafe” regions per
device and resolution

» e.g.edges of aTV, under

the home bar of an

iPhone, etc...

» Elements in a Safe Zone
widget will adjust according
to device resolution and

orientation to ensure all Outer region is “unsafe” for given device preview
screen elements are visible

CS354P

FONTS AND LOCALIZATION

» UE5 comes with several default fonts but they assume English
language characters

» Possible to import custom fonts as assign them to text assets
» Actual text displayed should be saved in FText structs

» Implemented with Shared Reference Pointers

» Efficient checks for dirty in cache

» Efficient serialization/network support
» LOCTEXT family of macros handles localization

» Includes namespace, key, and source string

CS354P

WHAT IS LOCALIZATION AND WHY DQES IT MATTER?

» Localization is the process of updating a
game to be relevant to a region’s audience

» Respecting a country’s censorship laws

» Updating voice acting to be in the local
language(s)

» Updating text to be in the local
language(s)

» Good localization ensures the cultural and

language contexts are successfully

Conveyed Japanese Name: Naruhodo Rydichi

English Name: Phoenix Wright

CS354P

ACCESSIBILITY

» UES supports screen readers with common widget
elements

» Allows 3rd party screen readers to access written data
and “say” what is written

» Must enable screen reader support in project then specify
which widgets should be accessible

» Can add support for custom widgets via C++

» We'll come back to the underlying C++ a bit later...

CS354P

UMG EVENTS

1 Details

} Similar fIOW to Standard Blueprint Event - 4 Is variable Open Button.
G ra p h S Search

> Slot (Vertical Box Slot)

[Appearance

» Focused on Ul elements and interactions RS

Is Focusable

Click Method

» Bindable events use a single handler

Touch Method

' Behavior

» Multicast events connect widget ala BP £t s

' Render Transform

P Touch Input

b Mouse .'Jﬂ.l jJJJIﬂ"‘
P Keyboard

P Drag and Drop
D Gamepad Input OnValueChanged (SoundVolume)
. A .
DefaultPosition ralin
NewPosition Value @
== SoundVolumeLevel

_— @ Sound Volume Level

GameTitleBox
QuitButton

StartButton
TextBlock_1 All Actions for this Blueprint

B show inherited variables

© View OnValueChange
P Call Function on Sound Volume

1. Details

4 Variable : ﬁldd Event
Variable Name Anim

CS354P

WAIT...IS THIS ALL STUFF WE'RE SUPPOSED TO D0?

» Not really...Ul artists and designers primarily work in these
systems

» Requires a lot of very specialized knowledge to be competent

» That said UI/UX programmers often need to assist artists and
designers with their workflow

» Take Blueprints created by artists/designers and translate them
into efficient C++ implementations

» Build underlying tools and systems to assist artists and
designers

CS354P

USING UMG WITH C++

» Ideally we want a C++ base with UMG Blueprint
functionality built on top of it

» More efficient to run
» Cleaner to use
» Less merge conflicts!

» Need to add UMG and Slate to our included modules (e.g.
the libraries our project depends on)

» Need to add the necessary includes to the project header

CS354P

USING GUI MODULES

» Under ProjectName.Build.cs:

» Add “UMG” to PublicDependencyModuleNames .AddRange ()

» Add “Slate”, “SlateCore” to
PrivateDependencyModuleNames .AddRange()

» In ProjectName.h add the following includes:

» #include
» #include
» #include
» #include

» #include

"Runtime/UMG/Public/UMG.h"
"Runtime/UMG/Public/UMGStyle.h"
"Runtime/UMG/Public/Blueprint/UserWidget.h"
"Runtime/UMG/Public/Slate/SObjectWidget.h"

"Runtime/UMG/Public/IUMGModule.h"

CS354P

CREATING WIDGET CLASSES

» Inherit from UserWidget to allow extensions to Blueprint

» Create functions, properties, and events in either C++ or BP as we've
seen previously

» Connect widgets to PlayerControllers to have them display for that
player

» MyWidget->AddToViewport();

» Can create a widget using CreateWidget<MyWidget>(this,
MyWidgetBP) ;

» Can define MyWidgetBP via Blueprint or using FClassFinder in the
constructor

CS354P

USING FCLASSFINDER
» In.h
UPROPERTY(...)

TSubclassOf<MyWidget> MyWidgetBP;

» In .cpp

static ConstructorHelpers::FClassFinder<MyWidget>
BlueprintClass (TEXT("“/Path/to/Blueprint/Reference”));

1f (BlueprintClass.Succeeded())

MyWidgetBP = BlueprintClass.Class;

CS354P

FCLASSFINDER VS FOBJECTFINDER

» Provide functionality for finding either a UClass or a UObject
respectively

» UClass derives from UObject, so FObjectFinder is more
general

» Note: “/Path/to/Blueprint/Reference” refers to the
blueprint asset whereas “/Path/to/Blueprint/
Reference C” refersto the class object

» In many cases, both finders are valid ways of finding either the
object itself or the class object

CS354P

CONNECTING WIDGETS TO C++

» Create a UPROPERTY with specifiermeta = (BindWidget)
» Name of widget in .h must match name in UMG!
» Add delegate function pointersin Initialize()

» MyButton->0OnClicked.AddDynamic(this,
&MyClass: :0OnClickedFunction);

» Can create C++ functionality for all Widgets (including sub-widgets
of other widgets)

» Widget composition can get quite complex, so take time to
reason through the UX functionality before building

CS354P

WIDGET COMPONENTS

» 3D Widgets that can be placed into a world by attaching them to actors
» Same idea as any other component

» Derive from UMeshComponent -> UPrimitiveComponent ->
USceneComponent -> UActorComponent

» Must include necessary modules in Build.cs to create them in C++

» Useful for diegetic content (e.g. Ul that exists in the world) and context-
sensitive content (e.g. Ul that exists for the player but only in certain
states)

» Many built-in functions for determining how to display and where (i.e.
across a network)

CS354P

SLATE

» Custom Ul framework for Unreal

» Built as a declarative Ul-description language in C++
» Used to build Unreal’s Editor!

» Ideal choice for building UES editor plugins

» Can be used to build in-game widgets to avoid dealing with UMG
(which is notably built on Slate)

» UMG is a WYSIWYG; Slate resembles a mark-up language

» Not particularly recommended though...

CS354P

SLATE EXAMPLES

ERadioChoice CurrentChoice;

ECheckBoxState: :Type IsRadioChecked(ERadioChoice ButtonId) const
{
return (CurrentChoice == ButtonId)
ECheckBoxState: :Checked
ECheckBoxState: :Unchecked;

void OnRadioChanged(ERadioChoice RadioThatChanged, ECheckBoxState::Type NewRadioState)
{

if (NewRadioState == ECheckBoxState::Checked)

{
CurrentChoice = RadioThatChanged;

Define radio buttons as an enum of checkboxes

CS354P

SLATE EXAMPLES

FMenuBarBuilder MenuBarBuilder(CommandList);

{
MenuBarBuilder.AddPullDownMenu(TEXT("Menu 1"), TEXT("Opens Menu 1"), FNewMenuDelegate::CreateRaw(&FMenus::FillMenulEntries));

MenuBarBuilder.AddPullDownMenu(TEXT("Menu 2"), TEXT("Opens Menu 2"), FNewMenuDelegate::CreateRaw(&FMenus::FillMenu2Entries));

return MenuBarBuilder.MakeWidget();

A menu example

CS354P

SLATE ARCHITECTURE DESIGN

» Goals are to:
» Have easy access to data and models
» Allow procedural Ul generation
» Support for animation and styling
» Limit ability to mess up Ul descriptions
» Slate is compile-time checked

» Two passes: caching desired widget size, and arranging children
accordingly

CS354P

SLATE ARCHITECTURE CHOICES

» Avoid opaque caches and duplicated state over CPU concerns

» All current layout based on programmer settings rather than previous layout
state

» Prefer polling data whenever possible

» If necessary, use of delegates to retrieve and modify data from the model if
state is not drastically changing

» If necessary, use of delegates with low-grain invalidation to modify data if
state has drastically changed

» e.g.in Blueprints, changes to the Event Graph results in all widgets being
cleared and recreated

CS354P

ASSUMPTIONS (FOR GOOD OR ILL)

» Developer side performance:
» Programmers are expensive; CPUs are fast and cheap
» Gameplay side performance:

» Ul complexity is bound by number of live widgets, so
avoiding live widgets off-screen limits performance dips

» If players have big screens, they also have beefy
machines to drive those screens

CS354P

REFERENCES

» UMG Documentation <https://docs.unrealengine.com/en-US/
Engine/UMG/index.html>

» Using Unreal Motion Graphics (UMG) with C++ <https://
www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/>

» UWidgetComponent Documentation<https://
docs.unrealengine.com/en-US/API/Runtime/UMG/
Components/UWidgetComponent/index.html>

» Slate Documentation <https://docs.unrealengine.com/en-US/
Programming/Slate/index.html|>

https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/
https://www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html

