
OVERVIEW: GUIS
CS354P
DR SARAH ABRAHAM

CS354P

GRAPHICAL USER INTERFACES

CS354P

WHAT IS IN A GUI?

▸ Not just art assets!

▸ GUIs display important information for the player:

▸ Character status

▸ Enemy status

▸ Leveling information

▸ Map information

▸ Out of game menus

CS354P

DESIGNING A GUI

▸ GUI layouts should be:

▸ Intuitive to navigate

▸ Intuitive to understand

▸ Intuitive to access

▸ This is harder than it sounds

▸ An entire area of design is dedicated to interaction

▸ You will probably get it wrong the first time

▸ Iterate GUI design via user testing

CS354P

GUI TYPES: MENUS

▸ Outside of game play options, modes, and information

Metal Gear Solid V

CS354P

GUI TYPES: HUDS

▸ In-game persistent display of information

Final Fantasy XIV

CS354P

GUI TYPES: DIEGETIC DISPLAYS

▸ In-game display of information incorporated into world

Dead Space

CS354P

GUI TYPES: GUI-LESS

▸ No in-game display of information — purely contextual

Last Guardian

CS354P

GUI PROGRAMMING

▸ Based on the above, what can we determine about GUI
programming?

▸ GUI programming is:

▸ Interdisciplinary in nature

▸ Highly event-driven

▸ Highly state-based

▸ Un-performant if implemented poorly

▸ Notoriously “spaghetti”

CS354P

GUIS IN UNREAL

▸ Slate is UE5’s custom UI programming framework

▸ Unreal editor is built in Slate

▸ Written in C++

▸ Can customize editor panels or be used in-game

▸ Primarily used for tools-building

▸ UMG (Unreal Motion Graphics) is UE5’s visual UI authoring tool

▸ Built using Widget Blueprints

▸ Blueprint includes layout mode and event graph mode for reacting
to inputs

CS354P

WIDGET BLUEPRINTS

▸ Similar concept to Animation Blueprints

▸ Specialized graph and visualization functionality built for user interface
elements

▸ Built-in functionality for:

▸ Constraints

▸ Animations

▸ Events

▸ Scaling

▸ Styling

▸ etc...

CS354P

WIDGET BLUEPRINT EDITOR

CS354P

WHAT ARE WIDGETS?
▸ Widgets are the common GUI elements used to convey information and provide

events

▸ UMG widget examples:

▸ Border

▸ Button

▸ Image

▸ Checkbox

▸ Text

▸ Slider

▸ etc...

CS354P

HOW CAN WE BE RESOLUTION INDEPENDENT?

▸ Resolve widget placement using constraints

▸ Layout can be treated as a system of linear equations and constraints

▸ Treat as an optimization problem (minimize constraint violations)

▸ Resolve using a linear objective function

▸ Soft constraints (i.e. requested constraints that can be violated if
necessary to find a solution) can be violated in non-uniform ways

▸ Quadratic objective functions better handle the minimization of error

▸ Constraint solving can decrease responsiveness

▸ Constraint solving allows for static analysis of violations

CS354P

ANCHORS

▸ Anchors define desired
position within a Canvas
Panel

▸ Normalized between 0
and 1 for min and max

▸ Origin (0, 0) is in upper
left corner

▸ Can place anchor
manually within the scene

Widget anchored to upper left corner

CS354P

SAFE ZONES

▸ Specialized widgets that
handle “unsafe” regions per
device and resolution

▸ e.g. edges of a TV, under
the home bar of an
iPhone, etc...

▸ Elements in a Safe Zone
widget will adjust according
to device resolution and
orientation to ensure all
screen elements are visible

Outer region is “unsafe” for given device preview

CS354P

FONTS AND LOCALIZATION

▸ UE5 comes with several default fonts but they assume English
language characters

▸ Possible to import custom fonts as assign them to text assets

▸ Actual text displayed should be saved in FText structs

▸ Implemented with Shared Reference Pointers

▸ Efficient checks for dirty in cache

▸ Efficient serialization/network support

▸ LOCTEXT family of macros handles localization

▸ Includes namespace, key, and source string

CS354P

WHAT IS LOCALIZATION AND WHY DOES IT MATTER?

▸ Localization is the process of updating a
game to be relevant to a region’s audience

▸ Respecting a country’s censorship laws

▸ Updating voice acting to be in the local
language(s)

▸ Updating text to be in the local
language(s)

▸ Good localization ensures the cultural and
language contexts are successfully
conveyed

English Name: Phoenix Wright
Japanese Name: Naruhodō Ryūichi

CS354P

ACCESSIBILITY

▸ UE5 supports screen readers with common widget
elements

▸ Allows 3rd party screen readers to access written data
and “say” what is written

▸ Must enable screen reader support in project then specify
which widgets should be accessible

▸ Can add support for custom widgets via C++

▸ We’ll come back to the underlying C++ a bit later...

CS354P

UMG EVENTS

▸ Similar flow to standard Blueprint Event
Graphs

▸ Focused on UI elements and interactions

▸ Bindable events use a single handler

▸ Multicast events connect widget ala BP

CS354P

WAIT...IS THIS ALL STUFF WE’RE SUPPOSED TO DO?

▸ Not really...UI artists and designers primarily work in these
systems

▸ Requires a lot of very specialized knowledge to be competent

▸ That said UI/UX programmers often need to assist artists and
designers with their workflow

▸ Take Blueprints created by artists/designers and translate them
into efficient C++ implementations

▸ Build underlying tools and systems to assist artists and
designers

CS354P

USING UMG WITH C++

▸ Ideally we want a C++ base with UMG Blueprint
functionality built on top of it

▸ More efficient to run

▸ Cleaner to use

▸ Less merge conflicts!

▸ Need to add UMG and Slate to our included modules (e.g.
the libraries our project depends on)

▸ Need to add the necessary includes to the project header

CS354P

USING GUI MODULES

▸ Under ProjectName.Build.cs:

▸ Add “UMG” to PublicDependencyModuleNames.AddRange()

▸ Add “Slate”, “SlateCore” to
PrivateDependencyModuleNames.AddRange()

▸ In ProjectName.h add the following includes:

▸ #include "Runtime/UMG/Public/UMG.h"

▸ #include "Runtime/UMG/Public/UMGStyle.h"

▸ #include "Runtime/UMG/Public/Blueprint/UserWidget.h"

▸ #include "Runtime/UMG/Public/Slate/SObjectWidget.h"

▸ #include "Runtime/UMG/Public/IUMGModule.h"

CS354P

CREATING WIDGET CLASSES

▸ Inherit from UserWidget to allow extensions to Blueprint

▸ Create functions, properties, and events in either C++ or BP as we’ve
seen previously

▸ Connect widgets to PlayerControllers to have them display for that
player

▸ MyWidget->AddToViewport();

▸ Can create a widget using CreateWidget<MyWidget>(this,
MyWidgetBP);

▸ Can define MyWidgetBP via Blueprint or using FClassFinder in the
constructor

CS354P

USING FCLASSFINDER

▸ In .h

 UPROPERTY(...)

 TSubclassOf<MyWidget> MyWidgetBP;

▸ In .cpp

 static ConstructorHelpers::FClassFinder<MyWidget>
BlueprintClass(TEXT(“/Path/to/Blueprint/Reference“));

 if (BlueprintClass.Succeeded())

 MyWidgetBP = BlueprintClass.Class;

CS354P

FCLASSFINDER VS FOBJECTFINDER

▸ Provide functionality for finding either a UClass or a UObject
respectively

▸ UClass derives from UObject, so FObjectFinder is more
general

▸ Note: “/Path/to/Blueprint/Reference“ refers to the
blueprint asset whereas “/Path/to/Blueprint/
Reference_C” refers to the class object

▸ In many cases, both finders are valid ways of finding either the
object itself or the class object

CS354P

CONNECTING WIDGETS TO C++

▸ Create a UPROPERTY with specifier meta = (BindWidget)

▸ Name of widget in .h must match name in UMG!

▸ Add delegate function pointers in Initialize()

▸ MyButton->OnClicked.AddDynamic(this,
&MyClass::OnClickedFunction);

▸ Can create C++ functionality for all Widgets (including sub-widgets
of other widgets)

▸ Widget composition can get quite complex, so take time to
reason through the UX functionality before building

CS354P

WIDGET COMPONENTS

▸ 3D Widgets that can be placed into a world by attaching them to actors

▸ Same idea as any other component

▸ Derive from UMeshComponent -> UPrimitiveComponent ->
USceneComponent -> UActorComponent

▸ Must include necessary modules in Build.cs to create them in C++

▸ Useful for diegetic content (e.g. UI that exists in the world) and context-
sensitive content (e.g. UI that exists for the player but only in certain
states)

▸ Many built-in functions for determining how to display and where (i.e.
across a network)

CS354P

SLATE

▸ Custom UI framework for Unreal

▸ Built as a declarative UI-description language in C++

▸ Used to build Unreal’s Editor!

▸ Ideal choice for building UE5 editor plugins

▸ Can be used to build in-game widgets to avoid dealing with UMG
(which is notably built on Slate)

▸ UMG is a WYSIWYG; Slate resembles a mark-up language

▸ Not particularly recommended though...

CS354P

SLATE EXAMPLES

Define radio buttons as an enum of checkboxes

CS354P

SLATE EXAMPLES

A menu example

CS354P

SLATE ARCHITECTURE DESIGN

▸ Goals are to:

▸ Have easy access to data and models

▸ Allow procedural UI generation

▸ Support for animation and styling

▸ Limit ability to mess up UI descriptions

▸ Slate is compile-time checked

▸ Two passes: caching desired widget size, and arranging children
accordingly

CS354P

SLATE ARCHITECTURE CHOICES

▸ Avoid opaque caches and duplicated state over CPU concerns

▸ All current layout based on programmer settings rather than previous layout
state

▸ Prefer polling data whenever possible

▸ If necessary, use of delegates to retrieve and modify data from the model if
state is not drastically changing

▸ If necessary, use of delegates with low-grain invalidation to modify data if
state has drastically changed

▸ e.g. in Blueprints, changes to the Event Graph results in all widgets being
cleared and recreated

CS354P

ASSUMPTIONS (FOR GOOD OR ILL)

▸ Developer side performance:

▸ Programmers are expensive; CPUs are fast and cheap

▸ Gameplay side performance:

▸ UI complexity is bound by number of live widgets, so
avoiding live widgets off-screen limits performance dips

▸ If players have big screens, they also have beefy
machines to drive those screens

CS354P

REFERENCES

▸ UMG Documentation <https://docs.unrealengine.com/en-US/
Engine/UMG/index.html>

▸ Using Unreal Motion Graphics (UMG) with C++ <https://
www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/>

▸ UWidgetComponent Documentation<https://
docs.unrealengine.com/en-US/API/Runtime/UMG/
Components/UWidgetComponent/index.html>

▸ Slate Documentation <https://docs.unrealengine.com/en-US/
Programming/Slate/index.html>

https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://docs.unrealengine.com/en-US/Engine/UMG/index.html
https://www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/
https://www.orfeasel.com/using-unreal-motion-graphics-umg-with-c/
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/API/Runtime/UMG/Components/UWidgetComponent/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html
https://docs.unrealengine.com/en-US/Programming/Slate/index.html

