
OVERVIEW: GRAPHICS
CS354P
DR SARAH ABRAHAM

CS354P

WHAT IS GRAPHICS?

▸ Broad area that includes anything involved in the process of getting
pictures onto a screen

▸ Rendering pipeline

▸ Physical simulation

▸ Procedural generation

▸ Animation

▸ Geometry and modelings

▸ etc...

CS354P

WE’LL FOCUS ON THE RENDERING FEATURES

▸ This will be as high-level as possible, since we won’t have
time to cover the actual math/hardware in any detail

▸ We’ll come back to some of these features when we talk
more about the GPU pipeline

CS354P

GRAPHICS PIPELINE OVERVIEW

▸ CPU (Central Processing Unit) passes functionality and data to the GPU (Graphics
Processing Unit)

▸ GPU architecture designed for throughput

▸ High bandwidth, high latency

▸ Goal is to process many similar operations in a parallel manner (i.e. efficiently
apply mathematical operations to scene data)

▸ Considerations:

▸ What data does the GPU need?

▸ How do we get it to the GPU?

▸ How do we specify what the GPU should do?

CS354P

GRAPHICS LIBRARIES

▸ Provide APIs for communicating data between the CPU and GPU

▸ OpenGL is a higher-level library created by the Khronos Group

▸ Performs more of the setup and makes assumptions about memory to simplify
developer interactions

▸ OpenGLES is graphics library for embedded systems such as mobile devices and web
applications

▸ Vulkan is a lower-level library created by the Khronos Group

▸ Allows greater flexibility and developer control by having developers perform setup
and determine things like memory management/thread management

▸ DirectX is the family of libraries created by Microsoft

▸ DirectX12 is equivalent to Vulkan in most functionality

▸ Metal is graphics library created by Apple and Sony has their own library as well...

CS354P

HOW DOES THESE RELATE TO THE GRAPHICS HARDWARE?

▸ Graphics hardware has API specifications that these graphics libraries
adhere to

▸ Graphics libraries supported in hardware via drivers

▸ The choices that graphics libraries make effect their support by drivers:

▸ OpenGL has tremendous backwards compatibility and support, and this
complexity effects its performance

▸ DirectX11 has similar issues but also more hand-optimized due to
marketshare

▸ DirectX12 and Vulkan are in the process of replacing OpenGL/DirectX11
in high-end games

CS354P

UNREAL: SUPPORTING MULTIPLE HARDWARES

▸ Rendering Hardware Interface (RHI) is a C++ interface to allow
communication from UE5’s rendering code to platform-dependent
implementations of graphics APIs

▸ Also use of an internal shader cross compiler (HLSLCC)

CS354P

WHAT ARE SHADERS?

▸ Small programs that run on GPU hardware

▸ GPUs have programmable pipelines which allow these compiled
programs to be linked to pipeline stages and dictate how data passed
from the CPU is processed

▸ Apply transforms to vertex data

▸ Use texture information

▸ Apply post-processing effects

▸ etc...

▸ Final output is an image buffer with each pixel “shaded” accordingly

CS354P

AT LAST...THE PRETTY STUFF...

▸ Shaders are where we specify things like lighting models, texture
mapping, material interactions and more

▸ i.e. they make things pretty
Final Fantasy 7 Remake

Everwild

Guilty Gear Strive

Backbone

CS354P

MATERIALS AND PHYSICALLY-BASED RENDERING (PBR)

▸ Concept of the visual qualities a mesh object has

▸ Textures are part of this but called materials because they represent
the actual material properties in relation to the lighting equation

▸ Take incoming light data and apply it to the physically-based lighting
function of the material to determine the final pixel color output

CS354P

BRDFS

▸ Bidirectional reflectance
distribution function

▸ Defines how a material reflects
light based on the angle of
observation

▸ Determines ratio of reflected
radiance

▸ Physically-based

▸ Empirically studied by material
sample

CS354P

MATERIAL PARAMETERIZATION

▸ Base Color (Albedo)

▸ Diffuse color based on scattering/absorption of light wavelengths

▸ Roughness

▸ Amount of microsurfaces and imperfections on material’s surface leading
to light scatter

▸ Metallic

▸ Degree of “metalness” including colored reflections and any diffusion
from corrosion/dirt on surface

▸ Reflectance

▸ Amount of reflected light on non-metallic surfaces

CS354P

ALBEDO

CS354P

ROUGHNESS

CS354P

METALLIC

CS354P

REFLECTANCE

CS354P

MATERIALS IN UNREAL

▸ Assets that can be applied to meshes to control the mesh’s
lighting properties

▸ Uses a node-based scripting language that connects to the
underlying shader programming language (in this case, HLSL)

▸ Allows artists to create visual effects without any shader
programming knowledge

▸ Possible to access HLSL directly but not required in many
cases

CS354P

MATERIAL PROPERTIES AND INPUTS

▸ Material properties specify things like blend
mode, shading model, level of detail,
translucency, and shader pipeline
optimizations among others

▸ Material inputs specify the material
parameterization discussed earlier

▸ Can connect to art programs like Substance,
which specialize in generating procedural,
PBR-based textures and materials

Material Inputs

CS354P

PUTTING IT ALL TOGETHER...

▸ Can create very simple to very complex effects...

https://forums.unrealengine.com/community/work-in-progress/7372-water-material

https://forums.unrealengine.com/community/work-in-progress/7372-water-material

https://forums.unrealengine.com/community/work-in-progress/7372-water-material

https://forums.unrealengine.com/community/work-in-progress/7372-water-material

CS354P

BUILT-IN EFFECTS

▸ Unreal has a ton of beautiful effects/features you can use “out of the box”

▸ Sky Atmospheres create
physically-based sky and
atmospheric rendering with time
of day

▸ Multiple types of visibility culling
plus per-instance settings

▸ Many, many pre-baked and
dynamic lighting setups

▸ Dynamic resolution support for
adjusting resolution per frame

CS354P

POST-PROCESSING EFFECTS

▸ Effects done at the end of the shading pipeline to apply visual changes globally
to the scene

▸ Unreal uses Post-Process Volumes that apply effect within that volume

▸ Effects include:

▸ Anti-aliasing

▸ Bloom

▸ Depth of Field

▸ Lens Flare

▸ Chromatic Aberration

▸ Vignette

CS354P

POST PROCESS MATERIALS

▸ Can also apply Post Process Materials, which are shaders
that work in the scene’s texture space*

* Note to students who have taken graphics: I’m differentiating texture and screen space
because Unreal assumes a deferred shading pipeline (which we’ll touch on later) but
you can think of this as a fragment shader

Some post-process material examples

CS354P

PARTICLE SYSTEMS

▸ Rules and memory management for a large body of point masses to create visual
effects

▸ Creation of fluid effects

▸ Creation of crowd behaviors/flocking

▸ etc..

▸ UE5 has two particle systems:

▸ Cascade is older, better documented system with less flexibility

▸ Niagara is newer, less documented system with greater flexibility

▸ Cascade and Niagara both designed for designer/artist use

▸ Niagara is more “next-gen” allowing designers/artists to create more lower-level
functionality with programmer assistance

CS354P

PARTICLE EFFECTS IN ACTION

Created by Ashif Ali in Niagara (https://cghow.com/members/asif786ali/)

https://cghow.com/members/asif786ali/

CS354P

RAY TRACING

▸ Technique that emulates the physical equations of light transport
to get an accurate representation of light-material interaction

▸ Increasingly common in modern systems with growing hardware
support

▸ Unreal supports two kinds of ray tracing

▸ Path tracing (offline, expensive form of raytracing to correctly
emulate light transport)

▸ Hybrid ray tracing (real-time form of raytracing that is used in
tandem with “raster” style effects)

CS354P

HYBRID RAYTRACING EXAMPLE: ARCHITECTURE STUDIOS

https://www.youtube.com/watch?v=YSZnX6P7-MM

https://www.youtube.com/watch?v=YSZnX6P7-MM

CS354P

FURTHER READING

▸ NVIDIA Bringing Unreal Engine 4 to OpenGL [https://
de45xmedrsdbp.cloudfront.net/Resources/files/
UE4_OpenGL4_GDC2014-514746542.pdf]

▸ OpenGL vs DirectX -- what really happened? [https://
www.back2gaming.com/reviews/b2g-games/pc/opengl-
vs-directx-what-really-happened/]

▸ UE4 Rendering and Graphics [https://
docs.unrealengine.com/en-US/Engine/Rendering/
index.html]

https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/UE4_OpenGL4_GDC2014-514746542.pdf
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://www.back2gaming.com/reviews/b2g-games/pc/opengl-vs-directx-what-really-happened/
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/index.html

