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WHAT IS MULTITHREADING?

» Occurs on a single processing unit

» Multiple virtual threads executed concurrently using
shared resources

» Not the same thing as parallel execution (i.e. multiple
cores/multiple processing units execute their tasks in
parallel)

» Note: hyper-threading is where the OS sees CPU as two
logical cores increasing independent instructions
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TYPES OF PARALLELISM

» Task parallelism
» Distributes multiple tasks (jobs) across cores to be performed in parallel
» Data parallelism

» Distributes data across cores to have sub-operations performed on that
data to facilitate parallelism of a single task

» Note: Parallelism is frequently accompanied by concurrency (i.e. multiple
cores still have multiple threads operating on the data)

» We will conflate these two concepts for simplicity in the remaining slides
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EMBARRASSINGLY PARALLEL WORKLOADS

» Workloads that can be easily separated into parallel subtasks are called
"embarrassingly parallel”

» Some examples:
» Monte Carlo analysis
» Numerical integration
» Graphics rendering
» Discrete Fourier transforms
» etc...

» What makes a problem easy to parallelize?
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COMMUNICATION AND DEPENDENCIES

» Any workload that is not embarrassingly parallel will have
associated overhead

» Threads need to communicate

» Threads need to wait on other threads to complete
» Thread management is additional overhead

» Creating and destroying threads is expensive

» Naive parallelization can increase, rather than decrease,
execution time
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RACE CONDITIONS

» Occur when program behavior is dependent on timing of multiple threads
or processes

» Outcome of execution is non-deterministic
» Hard to identify and debug
» Requires parallel thinking
» Behavior is only reproducible some of the time

» Thread-safety indicates that access patterns by threads will not resultin a
race condition

» Naive implementation can increase, rather than decrease, execution time
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MULTITHREADING FOR DEVELOPMENT

» Many development operations in a game engine can be highly parallelized
» Light building
» Level of detail generation
» Code Compilation
» Package building
» etc...
» Build times extremely important in development

» Full builds of large games can easily take overnight or multiple days
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NOT JUST COMPILING...

» C++ compilation is a slow process

(particularly if .h files modified) but

IPT THE #1 PROGRAMMER EXCUSE
hardly the bulk of build times FOR LEGITIMATELY SLACKING OFF-

» Working with geometry is extremely MY CODE'S COMPILING.
time consuming

HEY! GET BACK

» Pre-baking global illumination

» Performing mesh decimation

» Fortunately these operations can be
offloaded to render farms and efficiently
parallelized
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MULTITHREADING FOR GAMEPLAY

» Many operations within a game can be parallelized

» Some built-in Unreal threads:
» Gameplay thread manages objects

» Rendering thread handles graphics (always a frame or two behind the
gameplay thread)

» Audio and audio mixer threads handle playing of audio and mixing of
audio respectively (note that they are two separate threads)

» Physics substepping handled on its own thread

» These are notably task parallel, making them easier to distribute across cores/
threads

» What is we want data parallelism?
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POOLS AND SCHEDULERS

» Thread pools manage threads to reduce the destruction
and creation of workers

» Job schedulers allocate tasks or subtasks to worker
threads to reduce under-utilization of threads

» At least some thought must be put into both of these to
effectively parallelize a job
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CREATING YOUR OWN THREADS

» FRunnable is an interface for objects that are run on an
arbitrary thread

» Implement Init(),Run(), and Stop()

» Use in conjunction with FQueuedThreadPool to
determine number of threads needed for the task

» FNonAbandonableTask used for running non-blocking,
asynchronous tasks that cannot be abandoned

» Other flavors of asynchronous tasks available
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WHEN TO THREAD?

» When you are not performant
» Avoid premature optimization

» And remember: poor parallelization is worse than no
parallelization

» Tasks that are well-suited:
» Asynchronous loading of assets
» Calculations that are readily parallelizable

» Tasks that can be pulled off the main game loop safely
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GPUS AND PARALLELISM

» GPUs (Graphical Processing Units) are designed for
throughput architecture

» Relatively simple cores but a lot of them in parallel!
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SHADERS

» Small arbitrary programs that run
on GPU

» Massively parallel

» Four kinds: vertex, geometry,
tessellation, fragment

Vertex Specification

v

Vertex Shader

: Tessellation |

Vertex Post-Processing

v

Primitive Assembly

’

Rasterization

Per-Sample Operations
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VERTEX SHADER

* Runs in parallel on every vertex
* No access to triangles or other vertices
" Performs operations such as vertex transformations

> e.g. apply 4x4 matrices to each vertex
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TESSELLATION SHADER

* Controls amount of tessellation per patch

* Lower poly models can be subdivided into higher
resolution models

" Values calculated for generated vertices

> Level of detail (LOD) controllable within the shader
pipeline

* Optional
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GEOMETRY SHADER

> Takes a primitive and outputs multiple primitives
* Not optimized for subdivision (tessellation shader’s job)
> Ability to work on entire primitive

* Optional



CS354P

FRAGMENT SHADER

> Runs in parallel on each fragment (pixel) of the rasterized
data

> Can only access neighboring pixel values via textures
* Writes color and depth values per pixel

> Finalizes appearance of pixels
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MODERN GPU CHARACTERISTICS

> Homogeneous
programmable cores for all
programmable stages

> Relatively few special
purpose texture units

Even fewer fixed function
units

v

> Task parallel at pipeline
level
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SIMD

> Single instruction, multiple data

> Large vectors of data that have the same operation
applied to individual elements in parallel

* Based on old super computing techniques but has

regained popularity in modern architectures (both CPU
and GPU)
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SHARED INSTRUCTIONS

- T — -
00 racbeose | J 0
00 OE@EE@E@E@®m OO0
o= BEEEEEE8E8 -2
o DEDEEEE® __
.o [HEEEEBEE oo
00 ooy ] 00

> Same thing is done in parallel for all fragments/verts/etc

> SIMD amortizes instruction handling over multiple ALUs
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MULTIPLE TYPES OF PROCESSING
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8 programs running in parallel, 128 threads in parallel
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PROBLEMS?

» What situations does this throughput style of architecture
not handle well?
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BRANCHING AND STALLING

ALU1 ALU2 ALU3 ALU4 ALUS ALU6 ALU7 ALUS8

> Threads stall when next
instruction depends on
previous instruction’s
result

> Pipeline dependencies
* Memory latency

> How to handle these?
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MULTITHREADING

> We can assume there are more threads (scheduled
computations) than processors

* Threads with similar code executed in "warps” to maintain
minimal divergence

" Interleaving warp execution keeps hardware busy when an
individual warp stalls
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GPGPU

» Can do operations on the GPU besides graphics

» Heavily used in scientific computing and machine
learning

» Potentially useful in games for highly parallel calculations
(e.g. physics and Al)

» Depends on the graphical demands of the game

» Upfront versus amortized costs of sending data between
cpu and gpu



