
MULTITHREADING AND THE
GPU PIPELINE

CS354P
DR SARAH ABRAHAM

CS354P

WHAT IS MULTITHREADING?

▸ Occurs on a single processing unit

▸ Multiple virtual threads executed concurrently using
shared resources

▸ Not the same thing as parallel execution (i.e. multiple
cores/multiple processing units execute their tasks in
parallel)

▸ Note: hyper-threading is where the OS sees CPU as two
logical cores increasing independent instructions

CS354P

TYPES OF PARALLELISM

▸ Task parallelism

▸ Distributes multiple tasks (jobs) across cores to be performed in parallel

▸ Data parallelism

▸ Distributes data across cores to have sub-operations performed on that
data to facilitate parallelism of a single task

▸ Note: Parallelism is frequently accompanied by concurrency (i.e. multiple
cores still have multiple threads operating on the data)

▸ We will conflate these two concepts for simplicity in the remaining slides

CS354P

EMBARRASSINGLY PARALLEL WORKLOADS

▸ Workloads that can be easily separated into parallel subtasks are called
“embarrassingly parallel”

▸ Some examples:

▸ Monte Carlo analysis

▸ Numerical integration

▸ Graphics rendering

▸ Discrete Fourier transforms

▸ etc...

▸ What makes a problem easy to parallelize?

CS354P

COMMUNICATION AND DEPENDENCIES

▸ Any workload that is not embarrassingly parallel will have
associated overhead

▸ Threads need to communicate

▸ Threads need to wait on other threads to complete

▸ Thread management is additional overhead

▸ Creating and destroying threads is expensive

▸ Naive parallelization can increase, rather than decrease,
execution time

CS354P

RACE CONDITIONS

▸ Occur when program behavior is dependent on timing of multiple threads
or processes

▸ Outcome of execution is non-deterministic

▸ Hard to identify and debug

▸ Requires parallel thinking

▸ Behavior is only reproducible some of the time

▸ Thread-safety indicates that access patterns by threads will not result in a
race condition

▸ Naive implementation can increase, rather than decrease, execution time

CS354P

MULTITHREADING FOR DEVELOPMENT

▸ Many development operations in a game engine can be highly parallelized

▸ Light building

▸ Level of detail generation

▸ Code Compilation

▸ Package building

▸ etc...

▸ Build times extremely important in development

▸ Full builds of large games can easily take overnight or multiple days

CS354P

NOT JUST COMPILING...

▸ C++ compilation is a slow process
(particularly if .h files modified) but
hardly the bulk of build times

▸ Working with geometry is extremely
time consuming

▸ Pre-baking global illumination

▸ Performing mesh decimation

▸ Fortunately these operations can be
offloaded to render farms and efficiently
parallelized

CS354P

MULTITHREADING FOR GAMEPLAY
▸ Many operations within a game can be parallelized

▸ Some built-in Unreal threads:

▸ Gameplay thread manages objects

▸ Rendering thread handles graphics (always a frame or two behind the
gameplay thread)

▸ Audio and audio mixer threads handle playing of audio and mixing of
audio respectively (note that they are two separate threads)

▸ Physics substepping handled on its own thread

▸ These are notably task parallel, making them easier to distribute across cores/
threads

▸ What is we want data parallelism?

CS354P

POOLS AND SCHEDULERS

▸ Thread pools manage threads to reduce the destruction
and creation of workers

▸ Job schedulers allocate tasks or subtasks to worker
threads to reduce under-utilization of threads

▸ At least some thought must be put into both of these to
effectively parallelize a job

CS354P

CREATING YOUR OWN THREADS

▸ FRunnable is an interface for objects that are run on an
arbitrary thread

▸ Implement Init(), Run(), and Stop()

▸ Use in conjunction with FQueuedThreadPool to
determine number of threads needed for the task

▸ FNonAbandonableTask used for running non-blocking,
asynchronous tasks that cannot be abandoned

▸ Other flavors of asynchronous tasks available

CS354P

WHEN TO THREAD?

▸ When you are not performant

▸ Avoid premature optimization

▸ And remember: poor parallelization is worse than no
parallelization

▸ Tasks that are well-suited:

▸ Asynchronous loading of assets

▸ Calculations that are readily parallelizable

▸ Tasks that can be pulled off the main game loop safely

CS354P

GPUS AND PARALLELISM

▸ GPUs (Graphical Processing Units) are designed for
throughput architecture

▸ Relatively simple cores but a lot of them in parallel!

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

Fetch/Decode

ALU

Execution
Context

CS354P

SHADERS

▸ Small arbitrary programs that run
on GPU

▸ Massively parallel

▸ Four kinds: vertex, geometry,
tessellation, fragment

CS354P

VERTEX SHADER

‣ Runs in parallel on every vertex

‣ No access to triangles or other vertices

‣ Performs operations such as vertex transformations

‣ e.g. apply 4x4 matrices to each vertex

CS354P

TESSELLATION SHADER

‣ Controls amount of tessellation per patch

‣ Lower poly models can be subdivided into higher
resolution models

‣ Values calculated for generated vertices

‣ Level of detail (LOD) controllable within the shader
pipeline

‣ Optional

CS354P

GEOMETRY SHADER

‣ Takes a primitive and outputs multiple primitives

‣ Not optimized for subdivision (tessellation shader’s job)

‣ Ability to work on entire primitive

‣ Optional

CS354P

FRAGMENT SHADER

‣ Runs in parallel on each fragment (pixel) of the rasterized
data

‣ Can only access neighboring pixel values via textures

‣ Writes color and depth values per pixel

‣ Finalizes appearance of pixels

CS354P

MODERN GPU CHARACTERISTICS

‣ Homogeneous
programmable cores for all
programmable stages

‣ Relatively few special
purpose texture units

‣ Even fewer fixed function
units

‣ Task parallel at pipeline
level

Primitive
Assembly

Rasterizer

ROP
(Output Blend)

Work
Scheduler

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Programmable
Core

Texture Unit

Texture Unit

Texture Unit

CS354P

SIMD

‣ Single instruction, multiple data

‣ Large vectors of data that have the same operation
applied to individual elements in parallel

‣ Based on old super computing techniques but has
regained popularity in modern architectures (both CPU
and GPU)

CS354P

SHARED INSTRUCTIONS

‣ Same thing is done in parallel for all fragments/verts/etc

‣ SIMD amortizes instruction handling over multiple ALUs

Fetch/Decode

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Context

ALU

Shared Memory

Instruction Cache

CS354P

MULTIPLE TYPES OF PROCESSING

‣ GPUs do more than shading

‣ Allow execution of more than
one program

‣ Replicate SIMD processors for
different SIMD computations in
parallel

8 programs running in parallel, 128 threads in parallel

CS354P

PROBLEMS?

▸ What situations does this throughput style of architecture
not handle well?

CS354P

BRANCHING AND STALLING

‣ Threads stall when next
instruction depends on
previous instruction’s
result

‣ Pipeline dependencies

‣ Memory latency

‣ How to handle these?

T F F T F FT F

ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6 ALU 7 ALU 8

Ti
m

e

CS354P

MULTITHREADING

‣ We can assume there are more threads (scheduled
computations) than processors

‣ Threads with similar code executed in “warps” to maintain
minimal divergence

‣ Interleaving warp execution keeps hardware busy when an
individual warp stalls

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

Stall

w
ai

tin
g

Ready

Stall
w

ai
tin

g

Ready

Stall

w
ai

tin
g

Stall

Threads 1-8

Threads 24-36

Threads 17-24

Threads 9-16

extra
latency

extra
latency

CS354P

GPGPU

▸ Can do operations on the GPU besides graphics

▸ Heavily used in scientific computing and machine
learning

▸ Potentially useful in games for highly parallel calculations
(e.g. physics and AI)

▸ Depends on the graphical demands of the game

▸ Upfront versus amortized costs of sending data between
cpu and gpu

