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WHAT IS MULTITHREADING?

▸ Occurs on a single processing unit  

▸ Multiple virtual threads executed concurrently using 
shared resources 

▸ Not the same thing as parallel execution (i.e. multiple 
cores/multiple processing units execute their tasks in 
parallel) 

▸ Note: hyper-threading is where the OS sees CPU as two 
logical cores increasing independent instructions
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TYPES OF PARALLELISM

▸ Task parallelism 

▸ Distributes multiple tasks (jobs) across cores to be performed in parallel 

▸ Data parallelism 

▸ Distributes data across cores to have sub-operations performed on that 
data to facilitate parallelism of a single task 

▸ Note: Parallelism is frequently accompanied by concurrency (i.e. multiple 
cores still have multiple threads operating on the data) 

▸ We will conflate these two concepts for simplicity in the remaining slides
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EMBARRASSINGLY PARALLEL WORKLOADS

▸ Workloads that can be easily separated into parallel subtasks are called 
“embarrassingly parallel” 

▸ Some examples: 

▸ Monte Carlo analysis 

▸ Numerical integration 

▸ Graphics rendering 

▸ Discrete Fourier transforms 

▸ etc... 

▸ What makes a problem easy to parallelize?
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COMMUNICATION AND DEPENDENCIES

▸ Any workload that is not embarrassingly parallel will have 
associated overhead 

▸ Threads need to communicate 

▸ Threads need to wait on other threads to complete 

▸ Thread management is additional overhead 

▸ Creating and destroying threads is expensive 

▸ Naive parallelization can increase, rather than decrease, 
execution time
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RACE CONDITIONS

▸ Occur when program behavior is dependent on timing of multiple threads 
or processes 

▸ Outcome of execution is non-deterministic 

▸ Hard to identify and debug 

▸ Requires parallel thinking 

▸ Behavior is only reproducible some of the time 

▸ Thread-safety indicates that access patterns by threads will not result in a 
race condition 

▸ Naive implementation can increase, rather than decrease, execution time
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MULTITHREADING FOR DEVELOPMENT

▸ Many development operations in a game engine can be highly parallelized 

▸ Light building 

▸ Level of detail generation 

▸ Code Compilation 

▸ Package building 

▸ etc... 

▸ Build times extremely important in development 

▸ Full builds of large games can easily take overnight or multiple days
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NOT JUST COMPILING...

▸ C++ compilation is a slow process 
(particularly if .h files modified) but 
hardly the bulk of build times 

▸ Working with geometry is extremely 
time consuming 

▸ Pre-baking global illumination 

▸ Performing mesh decimation 

▸ Fortunately these operations can be 
offloaded to render farms and efficiently 
parallelized
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MULTITHREADING FOR GAMEPLAY
▸ Many operations within a game can be parallelized  

▸ Some built-in Unreal threads: 

▸ Gameplay thread manages objects 

▸ Rendering thread handles graphics (always a frame or two behind the 
gameplay thread) 

▸ Audio and audio mixer threads handle playing of audio and mixing of 
audio respectively (note that they are two separate threads) 

▸ Physics substepping handled on its own thread 

▸ These are notably task parallel, making them easier to distribute across cores/
threads 

▸ What is we want data parallelism?
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POOLS AND SCHEDULERS

▸ Thread pools manage threads to reduce the destruction 
and creation of workers 

▸ Job schedulers allocate tasks or subtasks to worker 
threads to reduce under-utilization of threads 

▸ At least some thought must be put into both of these to 
effectively parallelize a job
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CREATING YOUR OWN THREADS

▸ FRunnable is an interface for objects that are run on an 
arbitrary thread 

▸ Implement Init(), Run(), and Stop() 

▸ Use in conjunction with FQueuedThreadPool to 
determine number of threads needed for the task 

▸ FNonAbandonableTask used for running non-blocking, 
asynchronous tasks that cannot be abandoned 

▸ Other flavors of asynchronous tasks available
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WHEN TO THREAD?

▸ When you are not performant 

▸ Avoid premature optimization 

▸ And remember: poor parallelization is worse than no 
parallelization 

▸ Tasks that are well-suited: 

▸ Asynchronous loading of assets 

▸ Calculations that are readily parallelizable 

▸ Tasks that can be pulled off the main game loop safely  



CS354P

GPUS AND PARALLELISM

▸ GPUs (Graphical Processing Units) are designed for 
throughput architecture 

▸ Relatively simple cores but a lot of them in parallel!
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SHADERS

▸ Small arbitrary programs that run 
on GPU 

▸ Massively parallel  

▸ Four kinds: vertex, geometry, 
tessellation, fragment
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VERTEX SHADER

‣ Runs in parallel on every vertex 

‣ No access to triangles or other vertices 

‣ Performs operations such as vertex transformations 

‣ e.g. apply 4x4 matrices to each vertex
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TESSELLATION SHADER

‣ Controls amount of tessellation per patch 

‣ Lower poly models can be subdivided into higher 
resolution models 

‣ Values calculated for generated vertices 

‣ Level of detail (LOD) controllable within the shader 
pipeline 

‣ Optional
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GEOMETRY SHADER

‣ Takes a primitive and outputs multiple primitives 

‣ Not optimized for subdivision (tessellation shader’s job) 

‣ Ability to work on entire primitive 

‣ Optional
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FRAGMENT SHADER

‣ Runs in parallel on each fragment (pixel) of the rasterized 
data 

‣ Can only access neighboring pixel values via textures 

‣ Writes color and depth values per pixel 

‣ Finalizes appearance of pixels
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MODERN GPU CHARACTERISTICS

‣ Homogeneous 
programmable cores for all 
programmable stages 

‣ Relatively few special 
purpose texture units 

‣ Even fewer fixed function 
units 

‣ Task parallel at pipeline 
level
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SIMD

‣ Single instruction, multiple data 

‣ Large vectors of data that have the same operation 
applied to individual elements in parallel 

‣ Based on old super computing techniques but has 
regained popularity in modern architectures (both CPU 
and GPU)
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SHARED INSTRUCTIONS

‣ Same thing is done in parallel for all fragments/verts/etc 

‣ SIMD amortizes instruction handling over multiple ALUs
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MULTIPLE TYPES OF PROCESSING

‣ GPUs do more than shading 

‣ Allow execution of more than 
one program 

‣ Replicate SIMD processors for 
different SIMD computations in 
parallel 

8 programs running in parallel, 128 threads in parallel
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PROBLEMS?

▸ What situations does this throughput style of architecture 
not handle well?
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BRANCHING AND STALLING

‣ Threads stall when next 
instruction depends on 
previous instruction’s 
result 

‣ Pipeline dependencies 

‣ Memory latency 

‣ How to handle these? 
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MULTITHREADING

‣ We can assume there are more threads (scheduled 
computations) than processors 

‣ Threads with similar code executed in “warps” to maintain 
minimal divergence 

‣ Interleaving warp execution keeps hardware busy when an 
individual warp stalls
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GPGPU 

▸ Can do operations on the GPU besides graphics 

▸ Heavily used in scientific computing and machine 
learning 

▸ Potentially useful in games for highly parallel calculations 
(e.g. physics and AI) 

▸ Depends on the graphical demands of the game 

▸ Upfront versus amortized costs of sending data between 
cpu and gpu


