
BUG TESTING/BUG TRACKING

CS354P
DR SARAH ABRAHAM

CS354P

BUG TESTING

▸ An extremely important aspect of software development

▸ We tend to skim over it in classes, because there are so many (more
fun) “fundamentals” to cover

▸ But bug fixes are arguably the majority of what you’ll be doing at a
job

▸ The “80/20” rule

▸ 80% of the time will be spent on 20% of the product

▸ To rephrase: building out a working prototype takes 20% of the
time, polishing the product takes 80% of the time

CS354P

WHAT ARE BUGS IN GAMES?

▸ A little different from other industries...

▸ Bugs can:

▸ Prevent player progress

▸ Be implementations that do not match the design
specification

▸ Impact player experience and immersion

▸ Bugs can be related to performance, visuals, audio, player input,
game state, physics, AI, etc...

CS354P

DEBUGGING REVISITED...

▸ When unexpected behaviors occur, how do you debug?

▸ Do you read log files? If so, how?

▸ Do you use break points? If so, how?

▸ Do you use print statements? If so, how?

▸ What other tools do you use? How do you use them?

CS354P

APPROACHING BUG FIXES

▸ It’s impossible to debug effectively through guess work

▸ Approach bugs methodically and with an open mind

▸ How many times have you heard a programmer say “that’s
impossible” as the impossible thing happens in front of them?

▸ If you feel tired or frustrated, go do something else/sleep on it if
possible

▸ Sometimes fixing things just takes time and a clear head --
attempting to rush the process will just make the process take
longer and you will be more unhappy

CS354P

WORKING WITH A HYPOTHESIS
1. Understand the bug

‣ What exactly makes it a bug? What is expected versus actual behavior? What other
behaviors may or may not be related to the bug itself?

2. Understand the bug’s reproducibility

‣ When does the bug occur? What sequence of events causes it versus doesn’t
cause it? Take time to really understand when and how the bug manifests

3. Form a hypothesis for why the bug is occurring

‣ Pick one thing at a time to consider! Choose the “easy to fix or test” hypotheses
first and eliminate the “most likely” issues as soon as possible too

4. Isolate the variables as much as possible when testing your hypothesis

‣ You must be methodical in how you approach this. Trying to test quickly is only
going to obfuscate the issue and miss the problems

CS354P

OTHER FORMS OF TESTING IN UNREAL?

CS354P

UNREAL AUTOMATION TESTING

▸ Automation testing, broadly speaking, is the process of running
tests automatically to check against an expected result

▸ In UE5, Automation Testing is the lowest level of this automated
process

▸ Primarily used in-engine and exists outside of UObject
ecosystem

▸ Not visible to Blueprints or Reflection System

▸ Can create Simple and Complex tests by deriving from
FAutomationTestBase

CS354P

AUTOMATION MACROS AND FUNCTIONS

▸ IMPLEMENT_SIMPLE_AUTOMATION_TEST and
IMPLEMENT_COMPLEX_AUTOMATION_TEST

▸ Both macros have three parameters:

▸ TClass (name of test class)

▸ PrettyName (name that appears in UE)

▸ TFlags (flag values for testing)

▸ Must include RunTest function for both types of testing and
GetTests function for complex testing

CS354P

SIMPLE TESTS

▸ Used for single, atomic tests (i.e. unit tests)

▸ Unit tests examine individual sections of code in isolation

▸ Ideally considers smallest, testable part of the API and
verifies they are working

▸ No consideration for larger functionality

CS354P

USING SIMPLE TESTS

▸ Answers questions related to basic functionality

▸ Does the map load?

▸ Do actors spawn with the correct parameters?

▸ Is the UI updating as expected?

▸ Do state-changing functions change the state correctly?

CS354P

COMPLEX TESTS

▸ Used for testing the same code using multiple inputs

▸ Can check things like do all maps load or do all Blueprints
compile

▸ Used for content stress tests to avoid system crashes and
other issues arising from performance or memory
considerations

CS354P

FUNCTIONAL TESTING

▸ Tests larger features such as mechanics or actions and take
system interactions into account

▸ Takes the perspective of the user and “expected”
behavior

▸ Harder to reason about but better for considering the
user’s experience

▸ Possible to implement these systems using Blueprint and
the Functional Test plugin

CS354P

EXAMPLE: TESTING DOUBLE JUMP

(https://kobiton.com/automation-testing/an-introduction-to-automated-testing-for-an-unreal-engine-project/)

https://kobiton.com/automation-testing/an-introduction-to-automated-testing-for-an-unreal-engine-project/

CS354P

AUTOMATION DRIVER

▸ Simulates player input to test functionality within the game

▸ Currently limited to keyboard and mouse support

▸ Can be used on scene actors in addition to UI

▸ Uses dependency injection to pass dummy values into the
input system

▸ Fairly advanced system to work with but can provide a way
to build out both UI testing and bot testing

CS354P

ADDITIONAL AUTOMATION SUITE FEATURES

▸ FBX Test Builder checks modifications to imported .fbx
assets against expected results

▸ e.g. unit testing for art assets

▸ Screenshot Comparison Tool provides an interface for diff
comparisons between images based on build

▸ Requires human eyes but simplifies the debugging of
graphical issues

CS354P

SMOKE TESTING

▸ Process of determining whether or not a build is stable
based a simple set of tests

▸ Most baseline level of expected functionality to continue
working

▸ Unreal Smoke Tests are run every time the Editor, game, or
commandlet starts

▸ Only tests that run in under 1 sec should be marked as
Smoke

CS354P

TESTING LARGER INTERACTIONS

▸ Despite many levels of automation, games still rely heavily
on manual testing to catch unexpected interactions

▸ Tester time is cheap compared to programmer time (i.e.
they are underpaid)

▸ Task is to catch corner cases automated systems miss

CS354P

QUALITY ASSURANCE

▸ Quality Assurance (QA) assures product’s quality is at
acceptable, expected level for customers

▸ Feedback loop:

▸ Design —> Develop —> Test

▸ Dedicated QA expedites process of tracking and
correcting bugs and features

▸ Complementary role to designers and developers

CS354P

IDEAL BUG REPORTS

▸ Bug reports should have:

▸ Descriptive title

▸ Bug summary

▸ Encountered behavior

▸ Expected behavior

▸ Steps to reproduce

▸ Screenshots or video

▸ Other things to track are the product, platform, build, priority, severity, and
status

CS354P

CONVEYING BUG INFORMATION

▸ Descriptive title should explain the issue, including what system is involved and the
specific error that occurred

▸ “System crashed” is bad...

▸ Bug summary should describe how and when the bug was encountered

▸ Encountered behavior should be descriptive, accurate, and as tangible as possible

▸ “Blood is too gloopy” is bad...

▸ Expected behavior should be accurate and specific

▸ Steps to reproduce should be as detailed as possible

▸ May need to include hardware/periphery information, etc

▸ Screenshots or video of bug should be concise and include notations if possible

CS354P

BUG LIFE CYCLE

▸ Efficient fixes require efficient
bug tracking

▸ Easy to have duplicated bugs
in a bug tracking database

▸ Can be difficult to reproduce
issues

▸ Bug retesting must occur
within the correct build to
avoid “recurring” bugs

CS354P

BUG TRIAGE

▸ Process of assessing bug severity and priority

▸ Bug severity determines how serious (i.e. game-breaking/profit-losing, etc) a
bug is

▸ Bug priority determines how important it is to fix a bug

▸ Some examples:

▸ What could be a high severity/high priority bug?

▸ What could be a low severity/low priority bug?

▸ What could be a high severity/low priority bug?

▸ What could be a low severity/high priority bug?

CS354P

CODE FREEZE AND ASSET FREEZE

▸ Testing is always more extensive than development

▸ Good testing requires controlling the inherently chaotic development
process as much as possible

▸ Consistent build numbers and incremental changes, etc

▸ Code freeze/asset freeze says no new features or assets will be accepted into
the game

▸ Mostly just recommendations in your classes...but hard stops in industry!

▸ If your team lead gives you a code freeze/asset freeze deadline, you cannot
make changes to that code after the deadline without permission

▸ Essential to at some point move from the “feature-building” stage to the
“bug-fixing” stage

CS354P

FURTHER READING

▸ Testing and Test Driven Development in UE4 <https://
benui.ca/unreal/unreal-testing-tdd/>

▸ Automated Testing in UE4 <https://kobiton.com/
automation-testing/an-introduction-to-automated-testing-
for-an-unreal-engine-project/>

▸ How to write a bug report <https://geteasyqa.com/qa/
write-bug-report/>

https://benui.ca/unreal/unreal-testing-tdd/
https://benui.ca/unreal/unreal-testing-tdd/
https://kobiton.com/automation-testing/an-introduction-to-automated-testing-for-an-unreal-engine-project/
https://kobiton.com/automation-testing/an-introduction-to-automated-testing-for-an-unreal-engine-project/
https://kobiton.com/automation-testing/an-introduction-to-automated-testing-for-an-unreal-engine-project/
https://geteasyqa.com/qa/write-bug-report/
https://geteasyqa.com/qa/write-bug-report/

