
INTRODUCTION TO UNREAL

CS354P
DR SARAH ABRAHAM

CS354P

GETTING STARTED IN UE5...

▸ Can be a bit intimidating to bypass Blueprints!

▸ Lots of code functionality

▸ Large API with varying levels of documentation

▸ Easy to do it wrong

▸ Good starting points for documentation:

▸ https://docs.unrealengine.com/en-US/index.html

▸ https://docs.unrealengine.com/en-US/API/index.html

▸ But in practice you’re mostly going to rely on your search engine of choice...

https://docs.unrealengine.com/en-US/index.html
https://docs.unrealengine.com/en-US/API/index.html

CS354P

SCENES AND ACTORS

▸ Game worlds and levels
are similar to a movie:
there is a scene, and
actors within that scene

▸ Scene is composed of
actors (all objects in the
scene are a type of
actor)

Skybox

Actors in this scene:

Furniture

Plant

Ground

LightsBuilding

CS354P

WORKING WITH ACTORS

▸ Base class of all gameplay objects that can be placed in the world

▸ Can be spawned into the world

▸ Can contain components which determine actor’s behavior

▸ Handles memory management to spawn and destroy the actor object

▸ As an example, here are the virtual functions called on load:

▸ PostLoad -> OnComponentCreated -> PreRegisterAllComponents
-> RegisterComponent -> PostRegisterAllComponents ->
PostActorCreated -> UserConstructionScript ->
OnConstruction -> PreInitializeComponents -> Activate ->
InitializeComponent -> PostInitializeComponents ->
BeginPlay

CS354P

ACTOR CLASSES
▸ Over 240 derived classes of AActor

▸ Many different types of functionality depending on the situation

▸ You certainly won’t need to use all of them but some may be useful!

▸ Some common ones:

▸ APawn

▸ Physical representation of actors that can be possessed by a player or AI

▸ AController

▸ Non-physical actors that can possess pawns and control actions

▸ ATriggerBase

▸ Actors that can generate collision events

CS354P

ACTOR COMPONENTS

▸ Actors have components that implement much of their behavior and
functionality

▸ UActorComponent is base class but do not have transforms (i.e. scale,
rotate, translate)

▸ USceneComponent has transforms but not necessarily a geometric
representation

▸ UPrimitiveComponents are Scene Components with a geometric
representation

▸ UActorComponents can be registered to receive frame updates

▸ Not very performant so only register when necessary and unregister when
no longer necessary

CS354P

UOBJECTS

▸ Base class of all objects in Unreal Engine

▸ Not required to use but provides useful functionality for runtime
functionality (i.e. gameplay)

▸ Includes functionality for:

▸ Garbage collection

▸ Reflection

▸ Serialization

▸ Reference updating

▸ etc...

CS354P

UOBJECT AND GENERAL NAMING CONVENTION

▸ UE5 has quite a few code standards you should aim to follow

▸ Extremely helpful on large, constantly changing teams

▸ Still helpful on smaller, stable teams for readability

▸ Full guide here: https://docs.unrealengine.com/en-US/
Programming/Development/CodingStandard/index.html
but we will discuss a lot of this later...

▸ Prefix U inherits from UObject; Prefix A inherits from AActor;
Prefix S inherits from SWidget; Prefix I are abstract interfaces;
Prefix E are Enums, Prefix F is for structs and most other classes

https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard/index.html
https://docs.unrealengine.com/en-US/Programming/Development/CodingStandard/index.html

CS354P

UOBJECT LIFE CYCLE

▸ All UObjects and sub-classes are garbage collected

▸ Upon creation, UE5 adds object to its internal object list

▸ Create using creation methods

▸ Caveat: never use new!!

▸ Create a strong reference using UPROPERTY macro or can manually
flag

▸ Can call Destroy or DestroyComponent on actors and components

▸ Will mark the object for destruction and null the UPROPERTY
pointer upon destruction

CS354P

MACROS

▸ What are macros?

▸ Lines of code that are expanded by the preprocessor and
substituted in during compilation

▸ Can be “object-like” (no arguments) or “function-like”
(with arguments)

▸ Used for abstracting frequently used code or definitions

▸ Used for creating meta-object systems in large, complex
frameworks

CS354P

MACROS AND SPECIFIERS IN UNREAL

▸ UE5 heavily uses macros to control engine and editor functionality

▸ UPROPERTY creates strong references to objects, exposes property to
the editor, and allows property to be recognized by reflection

▸ UFUNCTION allows function to be recognized by reflection

▸ Specifiers inform how object or function should be used:

UPROPERTY(Replicated, EditAnywhere, BlueprintReadWrite,
Category = “Character”)

 float health;

UFUNCTION(BlueprintCallable, Category = “Character”)

 void takeDamage();

CS354P

CONSTRUCTORS

▸ Several different ways to create objects in UE5 -- none of which
involve calling new!

▸ All UObjects (whether actors or components) should use their
default creation methods:

▸ FooObject* f1 = NewObject<FooObject>();

▸ World->SpawnActor<FooActor>(FVector::ZeroVector,
FRotator::ZeroRotator);

▸ UComponent* FooComponent =
CreateDefaultSubobject<FooComponent>(TEXT(“Compon
entName”)); //Only use in object constructor

CS354P

GENERATED CODE

▸ Because of this compilation process, you must be cognizant of the
macros and includes associated with generated code

▸ i.e. do no randomly start deleting pre-generated code!

▸ #include “MyObject.generated.h”

▸ Must be last include in header of MyObject

▸ UCLASS specifies class is a UObject and should have reflection data

▸ GENERATED_BODY() placed at start of the class declaration

▸ UE4 will populate this with all necessary boilerplate code for this type

CS354P

ULEVEL

▸ Level object that contains list of actors (lights, volumes, mesh
instances, etc), geometry (BSP) information, and a “World” it is
associated with

▸ Multiple levels can be loaded and unloaded in a World to
stream assets

▸ An ALevelScriptActor exists within a level and executes
level-wide logic on actor instances

▸ Access that via code or Blueprint to deal with level-wide
behaviors

CS354P

ACTORS’ GAMEPLAY LOOP

▸ OnConstruction(const FTransform & Transform)
called when actor is placed in editor or spawned at runtime

▸ BeginPlay() called when play begins for this actor

▸ Destroy(bool bNetForce, bool bShouldModifyLevel)
called to initiate destruction of the instance

▸ Tick(float DeltaSeconds) called every frame on this actor

▸ Avoid this at all costs!

▸ How?

CS354P

EVENTS AND DELEGATES

▸ Events (or timers/delegates) should be used over tick
whenever possible

▸ ...It should pretty much always be possible...

▸ Many Blueprint events provided for common use-cases

▸ Can implement/call events in either C++ or Blueprints

▸ Must use function specifiers to override in C++

▸ Can use delegates for native C++ code (will cover those later)

CS354P

USING BLUEPRINT EVENTS

CS354P

SOME BLUEPRINT EVENTS...

CS354P

INPUT EVENTS

▸ Set input mappings via Input
Actions

▸ Handles axis (continuous) or
action (press and release)

▸ Input Mapping Contexts link
mappings to game actions
within the controller to the
pawn

▸ Input callbacks can be called
from C++ or Blueprint

CS354P

COLLISION AND OVERLAP EVENTS

▸ Can set actors to ignore,
overlap or block other
object types in the scene

▸ Overlap will generate
events but not result in
a physical collision

▸ Block will result in a
physical collision and
generate events if
flagged

CS354P

WHAT ABOUT THINGS THAT AREN’T SPAWNED IN?

▸ Many “physical” things are spawned into a game level

▸ What sort of things are not spawned into a game level but
are helpful to have/track?

CS354P

GAME STATES

▸ Often we want to know something about the state of the
game

▸ How many people are playing?

▸ Who is winning?

▸ What are the rules?

▸ GameMode, GameState and PlayerState provide
information about the current state and how to play

CS354P

GAME MODE

▸ Game modes define the rules of the game and exist only on the server

▸ Number of players/spectators present and allowed

▸ How players enter and are spawn/respawned in the game

▸ Pause-handling

▸ Level-transitions and cinematic mode handling

▸ Two base classes to choose from:

▸ AGameModeBase for simplified handling

▸ AGameMode includes extra support for multiplayer and legacy systems

▸ Note: UE4 has two forms of Game Mode from its legacy as an arena shooter
engine

CS354P

GAME STATE

▸ Game states allow clients to monitor the state of the game and
are replicated to all clients

▸ Built around networked multiplayer but useful for local
multiplayer/single-player as well

▸ Tracks game-wide properties such as:

▸ List of connected players

▸ Team scores

▸ Missions completed

CS354P

PLAYER STATE

▸ Player states are created for each player contain
information about the player such as name, score, health,
etc

▸ Built around networked player but useful in local
multiplayer/single-player games as well

▸ Replicated to all clients and contains network information
(such as ping) about the player

CS354P

HOMEWORK BEFORE NEXT CLASS...

▸ Makes sure you have completed Assignment 0 (creating an Epic account and
downloading Unreal Engine 5.2.1) to the machine you will be working on for the
rest of the semester

▸ This will take a while and require a decent Internet connection so give
yourself enough time!

▸ Next class will be Lab 1, where you will familiarize yourself with UE5

▸ I will be streaming via Twitch in the classroom so you can choose to:

1. Work from home

2. Work in the classroom

3. Work in the 1st floor lab

