
C++ AND BLUEPRINTS
CS354P
DR SARAH ABRAHAM

CS354P

GAME SCRIPTING LANGUAGES

▸ Most modern game
engines assume a C++
base and an in-engine
scripting language

▸ Performant code written in
lower-level language

▸ Designer prototyping and
less system-critical code
written in scripting
language

UE4 Blueprint

Godot GDScript

Unity C#

CS354P

C++ AND BLUEPRINTS

▸ Blueprints in native visual scripting language that is built
on top the underlying C++ data structures

▸ Blueprint is intended for use by designers and artists

▸ Programmers build out basic functionality in C++ and
make it accessible in Blueprints

▸ Designers/artists compose accessible blocks to
customize functionality

CS354P

NODE-BASED AND OBJECT-ORIENTED

▸ Logical structure of code represented in a visual way

▸ One-way exec pins create order of execution

▸ type pins allow values to be processed and fed into
other functionalities

▸ Object-oriented node structure matches underlying C++

▸ Different nodes provide different functionalities

▸ Incoming and outgoing pin types determined by node

CS354P

BLUEPRINT LIMITATIONS

▸ Significantly slower than C++

▸ Can be 25x slower than equivalent C++ code!

▸ Reduced functionality

▸ Not all library features are accessible via Blueprint

▸ Reduced readability

▸ Visual scripting is faster for prototyping but harder to
reason about/maintain

CS354P

PURE BLUEPRINT EXAMPLE

CS354P

EXAMPLE UNREAL GAME OBJECT CODE
//Header info here

UENUM(BlueprintType)
enum class ECharacterReactionStateEnum : uint8 {
 HEALTHY UMETA(DisplayName = "Is Healthy"),
 HIT UMETA(DisplayName = "Is Hit"),
 DYING UMETA(DisplayName = "Is Dying"),
 DEAD UMETA(DisplayName = "Is Dead")
};

UENUM(BlueprintType)
enum class ECharacterStrikeEnum : uint8 {
 LIGHT UMETA(DisplayName = "Light Hit"),
 HEAVY UMETA(DisplayName = "Heavy Hit"),
 SPECIAL UMETA(DisplayName = "Special")
};

DECLARE_DYNAMIC_MULTICAST_DELEGATE(FCharacterActionDelegate);

UCLASS(Blueprintable, config = Game)
class SKAZKA_API ASkazkaCharacter : public ACharacter
{
 GENERATED_BODY()

Enums are BlueprintType making them accessible from BP

Derived class inherits from ACharacter.
Blueprintable makes it accessible as a BP

public:
 ASkazkaCharacter(const FObjectInitializer& ObjectInitializer);

 virtual void BeginPlay() override;

 virtual void Tick(float DeltaSeconds) override;

 virtual void SetupPlayerInputComponent(UInputComponent* inputComponent)
override;

 virtual void FellOutOfWorld(const class UDamageType & dmgType) override;

 UFUNCTION(BlueprintImplementableEvent, Category = "Movement")
 void move(float value);
 UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")
 void jumpStarted();
 UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")
 void jumpEnded();

 UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")
 void lightAttackStarted();
 UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")
 void lightAttackEnded();

...

Standard functionality inherited from
ACharacter (a subclass of APawn)

C++ declared events for BP child.
BlueprintImplementableEvents must be
made public.

CS354P

COMBINING C++ AND BLUEPRINT

▸ Blueprint classes can extend either another Blueprint class
or a C++ class

▸ C++ functions and properties can have specifiers that
allow them to interact with Blueprint classes

CS354P

ANOTHER BLUEPRINT EXAMPLE

▸ Character charged attack

CS354P

SOME FUNCTION SPECIFIERS
▸ BlueprintCallable

▸ Function created in C++

▸ Called from either C++ or Blueprint

▸ BlueprintImplementableEvent

▸ Function overridden by Blueprint

▸ No body in C++

▸ Autogenerated code includes a thunk* that calls ProcessEvent

▸ BlueprintNativeEvent

▸ Function has both native C++ and can be overridden by

▸ Blueprint Body is implemented as [functionname]_Implementation

▸ Autogenerated code includes thunk to call implementation when necessary

CS354P

WHAT IS A THUNK?

▸ A small subroutine that is called within another subroutine the
jumps to another location

▸ Can insert operations into other subroutines

▸ Useful in OOP, where a method can be called by several
interfaces

▸ Used in Unreal to call into the Blueprint VM from the base C++
function

▸ If the Blueprint does not provide this function, does nothing

CS354P

SOME PROPERTY SPECIFIERS

▸ BlueprintReadOnly

▸ Property can be read by Blueprint but not modified

▸ BlueprintReadWrite

▸ Property can be read and written from a Blueprint

▸ EditAnywhere

▸ Property can be edited by property windows (both archetypes and instances)

▸ Native

▸ Property is native to C++

▸ C++ code is responsible for serialization and garbage collection

CS354P

SOME CHARACTER MOVEMENT PROPERTIES

CS354P

COMPILING C++ AND BLUEPRINT

▸ C++ can be Hot Reloaded

▸ Allows compiling of C++ from both IDE or Editor
without shutting down the Editor

▸ Note: Must build and run in IDE to use C++ breakpoints
during debugging

▸ Blueprints must also be compiled

▸ Save and compile BPs before running

CS354P

CASTING WITHIN BLUEPRINT

▸ Possible to cast objects to other types

▸ C++ way:

 AMyActor* myActor = Cast<AMyActor>(actor);

 if (myActor) { ... }

▸ Blueprint way:

CS354P

BLUEPRINT DEBUGGING

▸ Can debug Blueprints in similar ways to C++

▸ Breakpoints

▸ Call stack

▸ Execution Trace

▸ Print statements

▸ Visual Debugger

Example of visual debugger showing game’s
current execution

CS354P

WHEN TO USE C++ VERSUS BLUEPRINT?

▸ Only hard rule is that Blueprint won’t be as performant and is less
expressive

▸ Lots of flexibility where the dividing line should be depending on
team

▸ In general, I may do some initial prototyping in Blueprint and compose
the high level functionality in Blueprint, but I prefer to do most of the
work in code

▸ Cleaner and more maintainable even when performance isn’t a big
issue

▸ Easier to reconstruct if Unreal decides to eat your BP

