CS354P
DR SARAH ABRAHAM

C++ AND BLUEPRINTS

CS354P

UE4 Blueprint

GAME SCRIPTING LANGUAGES

S — J Destroy Actor
<> OnComponentBeginOverlap (StaticMesh1) | Spawn Emitter at Location

P —» »— P

Other Actor Emitter Template Retumn Value Target s.eh[
t

» Most modern game o | o

Target [self] RetumValue @

engines assume a C++

Prefix |

@® Inint

base and an in-engine — -
scripting language

» Performant code written in
lower-level language s

var side_right = true

func _process(delta):

string given :k states of both variables

= enemyscore.ToString() + " " + myscore.ToString():

» Designer prototyping and ...
less system-critical code
written in scripting ¢ "

ball.transform.position
ball.rigidbody.velocity = new Vector3 (0,
ball.rigidbody.AddForce (Vector3.right *

I a n g u a g e if (ball.transform.position.x < -2){

enemyscore++;
ball.transform.position = new Vector3(7,0,2);
ball.rigidbody.velocity = new Vector3 (0,)
ball.rigidbody.AddForce (Vector3.right *

) + Vector3.forward * 100);

’

) + Vector3.forward * 100);

CS354P

C++ AND BLUEPRINTS

» Blueprints in native visual scripting language that is built
on top the underlying C++ data structures

» Blueprintis intended for use by designers and artists

» Programmers build out basic functionality in C++ and
make it accessible in Blueprints

» Designers/artists compose accessible blocks to
customize functionality

CS354P

NODE-BASED AND OBJECT-ORIENTED

» Logical structure of code represented in a visual way
» One-way exec pins create order of execution

» type pins allow values to be processed and fed into
other functionalities

» Object-oriented node structure matches underlying C++
» Different nodes provide different functionalities

» Incoming and outgoing pin types determined by node

CS354P

BLUEPRINT LIMITATIONS

» Significantly slower than C++

» Can be 25x slower than equivalent C++ code!
» Reduced functionality

» Not all library features are accessible via Blueprint
» Reduced readability

» Visual scripting is faster for prototyping but harder to
reason about/maintain

CS354P

PURE BLUEPRINT EXAMPLE

T RSN
»

CS354P

EXAMPLE UNREAL GAME OBJECT CODE

Enums are BlueprintType making them accessible from BP

//Header info here

UENUM(BlueprintType)

enum class ECharacterReactionStateEnum : uint8 {
HEALTHY UMETA (DisplayName = "Is Healthy"),
HIT UMETA (DisplayName "Is Hit"),
DYING UMETA(DisplayName = "Is Dying"),
DEAD UMETA (DisplayName = "Is Dead")

}i

UENUM(BlueprintType)

enum class ECharacterStrikeEnum : uint8 {
LIGHT UMETA (DisplayName = "Light Hit"),
HEAVY UMETA (DisplayName = "Heavy Hit"),
SPECIAL UMETA (DisplayName = "Special')

}i

DECLARE DYNAMIC MULTICAST DELEGATE (FCharacterActionDelegate);

UCLASS (Blueprintable, config = Game)
class SKAZKA API ASkazkaCharacter : public ACharacter

GENERATED BODY ()

Derived class inherits from ACharacter.
Blueprintable makes it accessible as a BP

public:
ASkazkaCharacter(const FObjectInitializer& ObjectInitializer);

virtual void BeginPlay() override;
virtual void Tick(float DeltaSeconds) override;

virtual void SetupPlayerInputComponent (UInputComponent* inputComponent)
override;

virtual void FellOutOfWorld(const class UDa

A aracter (a subclass or APawn

Standard functionality inherited from

UFUNCTION(BlueprintImplementableEvent,
void move(float value);

UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")
void jumpStarted();
UFUNCTION(BlueprintImplementableEvent, Category = "Input Events")

void jumpEnded();

UFUNCTION(BlueprintImplementableEvent, Category = "Input Events')
void lightAttackStarted();

UFUNCTION(BlueprintImplementableEvent, Category

void lightAttackEnded();

"Input Events")

C++ declared events for BP child.
BlueprintimplementableEvents must be

made public.

CS354P

COMBINING C+-+ AND BLUEPRINT

» Blueprint classes can extend either another Blueprint class
or a C++ class

» C++ functions and properties can have specifiers that
allow them to interact with Blueprint classes

CS354P

ANOTHER BLUEPRINT EXAMPLE

» Character charged attack

Fam Component

Fam Component
1= Allowed
¢ Event Heavy Attack Started — | Begin Charging [Update Action State
> > > < Branch
v v | \ » True B » » »
Target eturn Value
wdated Action Condition False [> Target |self Target Return Value
Fsm Component —
Character Movement - -
Fam Component
| SetMovement Mode { Begin Strike f Update Action State
¢ Event Heavy Attack Ended [15 Allowed
< Branch
» =l K L R > > > >
- True
> » » ol g Target Target Target

Target Return Value t e [

s \ 3 F it New Movement Mode Strike Type Undated Act

¢ Event Begin Charged Strike Updated Action _ _ e
Attacking2 -
» New Custom Maode [0 | Startup Frame:
Hit Frame:
- . - - er Frame:
s Charging ! ‘
Adpn +

CS354P

SOME FUNCTION SPECIFIERS

» BlueprintCallable
» Function created in C++
» Called from either C++ or Blueprint
» BlueprintimplementableEvent
» Function overridden by Blueprint
» No body in C++
» Autogenerated code includes a thunk* that calls ProcessEvent
» BlueprintNativeEvent
» Function has both native C++ and can be overridden by
» Blueprint Body is implemented as [functionname]_Implementation

» Autogenerated code includes thunk to call implementation when necessary

CS354P

WHAT IS A THUNK?

» A small subroutine that is called within another subroutine the
jumps to another location

» Can insert operations into other subroutines

» Useful in OOP, where a method can be called by several
interfaces

» Used in Unreal to call into the Blueprint VM from the base C++
function

» If the Blueprint does not provide this function, does nothing

CS354P

SOME PROPERTY SPECIFIERS

» BlueprintReadOnly
» Property can be read by Blueprint but not modified
» BlueprintReadWrite
» Property can be read and written from a Blueprint
» EditAnywhere
» Property can be edited by property windows (both archetypes and instances)
» Native
» Property is native to C++

» C++ code is responsible for serialization and garbage collection

CS354P

SOME CHARA

KatyaCharacterBP(self)

4 § CapsuleComponent (Inherited)
R ArrowComponent (Inherited)
4 7 Mesh (Inherited)
1 Outline
™ strike1HitBox (Inherited)
¥ strike2HitBox (Inherited)
specialHitBox (Inherited)
¥ interactHitBox (Inherited)
¥ mount1HitBox (Inherited)
¥ mount2HitBox (Inherited)
#& grabPositionComponent (Inherited)
®& mountPositionComponent (Inherited)
% standPositionComponent (Inherited)
% guiComponent (Inherited)
% vineWhipTargetingBox (Inherited)

...CharacterMovement (Inherited)
» gripComponent (Inherited)

€ fsmComponent (Inherited)

M My Blueprint

+AddNew - ETI *) > -

4Graphs
D m= EventGraph
4Functions
?r ConstructionScript
Macros
4Variables
P Components

== |nitialPosition
== DefaultSlotinterp

Event Dispatchers

+

+

+
+

o)
+

= Viewport

f Construction

ma EventGraph

=
ma AdlyalliaiacCleiot > Eve

Fsm Component

<> Event Light Attack Started

Fsm Component

¢ Event Heavy Attack Started

< Event Heavy Attack Ended

’/D

EX CompilerResults

S 1 Alowed

»
Target

Updated Action

S 1= Allowed

»
Target

Updated Action

SET

s Whipping O

(® Find Results

CTER MOVEMENT PROPERTIES

4 Character Movement: Jumping / Falling
Jump Z Velocity
Braking Deceleration Falling
Air Control
Air Control Boost Multiplier
Air Control Boost Velocity Threshold
Falling Lateral Friction
Impart Base Velocity X
Impart Base Velocity Y
Impart Base Velocity Z
Impart Base Angular Velocity

Notify Apex

4 Character Movement (General Settings)
Gravity Scale
Max Acceleration

Braking Friction Factor

Use Separate Braking Friction
Crouched Half Height

Mass

Default Land Movement Mode

Default Water Movement Mode

4 Character Movement: Walking
Max Step Height
Walkable Floor Angle
Walkable Floor Z
Ground Friction
Max Walk Speed
Max Walk Speed Crouched
Min Analog Walk Speed
Braking Deceleration Walking
Sweep While Nav Walking
Can Walk Off Ledges
Can Walk Off Ledges when Crouching
Maintain Horizontal Ground Velocity

Ignore Base Rotation

4 Character Movement: Swimming
Max Swim Speed
Braking Deceleration Swimming

Buoyancy

o
o

g & . 3
= P
Y4 4

g

:

|EoQ0OQ

o

7]

Y4

u

u

u

u

o

CS354P

COMPILING C-++ AND BLUEPRINT

» C++ can be Hot Reloaded

» Allows compiling of C++ from both IDE or Editor
without shutting down the Editor

» Note: Must build and run in IDE to use C++ breakpoints
during debugging

» Blueprints must also be compiled

» Save and compile BPs before running

CS354P

CASTING WITHIN BLUEPRINT

» Possible to cast objects to other types

» C++ way:
AMyActor* myActor = Cast<AMyActor>(actor);
1f (myActor) { ... }

» Blueprint way:

CS354P

BLUEPRINT DEBUGGING

» Can debug Blueprints in similar ways to C++

. B R B S DR s - [
Class Setting BIRESIEIANIEY Simulatior Resur Frame Skip top Find N
el Size e Center

low Hely
[v [1] /
Breakpoints — " e
} p e Viewport Construction ell Size f Random Slic 1 ¢"% Generate Quac £ New Quad Cell m= Event Graph
WIS L Ui vimnu yuaus JI ISR]

JIINIS S cu

» Call stack
» Execution Trace
» Print statements

» Visual Debugger

Example of visual debugger showing game'’s
current execution

CS354P

WHEN TO USE C++ VERSUS BLUEPRINT?

» Only hard rule is that Blueprint won't be as performant and is less
expressive

» Lots of flexibility where the dividing line should be depending on
team

» In general, | may do some initial prototyping in Blueprint and compose
the high level functionality in Blueprint, but | prefer to do most of the
work in code

» Cleaner and more maintainable even when performance isn’t a big
Issue

» Easier to reconstruct if Unreal decides to eat your BP

