
COMMUNICATION IN UE
CS354P
DR SARAH ABRAHAM

CS354P

COMMUNICATION IN A GAME ENGINE

▸ Fundamental to a game engine’s design

▸ How should systems communicate?

▸ How should objects communicate?

▸ Choices in communication will effect every other system in
the game

CS354P

QUERYING THE WORLD
▸ All Actors (in fact all UObjects) have a GetWorld() method

▸ Accesses the current world (or level) the actor exists within

▸ Note: will return null if actor is not currently spawned

▸ Useful for working with the world space or other objects that exist in
that space

▸ Accessing the world:

▸ AActor->GetWorld()

▸ GEngine->GetWorldFromContextObject(const UObject *
WorldContextObject)

Observation: GEngine is static so it uses the WorldContextObject to
determine which World that object is in

CS354P

RAY-CASTS AND SWEEPS

▸ Ray-casting, or sweeping, is a common way to check for intersects
along a ray or line segment

▸ Can trace by channel or by object type for efficient results

▸ Can choose whether to return single or multiple hits (i.e. get the
first object intersected or every object intersected)

▸ Sweeps track blocking intersections encountered by an object

▸ Can sweep by channel or by object type

▸ Can choose whether to return a single intersect or multiple
intersects

CS354P

RAY-CAST EXAMPLES
Climbing/Parkour

Hitscan

(note: Ana uses hitscan only when scoped)

Visibility queries

CS354P

UE4 TRACE TYPES

▸ Line traces use the traditional ray-cast concept

▸ Also possible to trace with a box, capsule, or sphere

CS354P

EXAMPLE: TRACING AND DEBUGGING CODE

TArray<FHitResult> HitResults;
const FName TraceTag(TEXT(“My Trace"));
FVector Start = GetActorLocation();
FVector End = Start + WorldDirection * traceOffset;
FCollisionQueryParams QueryParams(TraceTag, false, this);
FCollisionResponseParams
ResponseParam(ECollisionResponse::ECR_Overlap);

GetWorld()->LineTraceMultiByChannel(HitResults, Start, End,
ECC_WorldDynamic, QueryParams, ResponseParam);

GetWorld()->DebugDrawTraceTag = TraceTag;

for (auto hit : HitResults) {
 //Process hit results here
}

Store results of trace hereStart and end point of trace

Trace complex collision

Perform multi-trace for dynamic world objects

CS354P

SWEEPS IN PRACTICE

▸ SweepByChannel methods used to determine if an actor has
collided with a blocking object (SweepSingleByChannel)
or multiple blocking objects (SweepMultiByChannel)

▸ bSweep is a flag used in to determine how an actor should
move to a given location

▸ If true, the actor can be blocked by geometry from
reaching the given location

▸ Used in methods such as SetActorLocation

CS354P

EVENTS

▸ In event-driven programming, everything happens in
response to events

▸ Popular paradigm for GUI systems and other
applications with lots of user interactions

▸ Events occur asynchronously with respect to the
execution of the rest of the program

▸ When a particular type of event arrives, the callback code
is executed automatically

CS354P

BLUEPRINT EVENTS

▸ UE5’s main event system is specifically for Blueprints in the
EventGraph

▸ Built in Blueprint events such as BeginPlay

▸ Custom events created via Blueprint or the macro
BlueprintImplementableEvent

▸ EventGraph manages the nodes to determine how and
when Blueprint events are executed

▸ Events otherwise not supported directly for UE5...

CS354P

DELEGATES

▸ UE5 uses delegates for executing functions on C++ objects

▸ A delegate contains a reference to another object’s function
and can execute that function

▸ Allows objects to “act on behalf of” another object (i.e.
delegation)

▸ Events use delegates as the mechanism for callbacks

▸ Broad and fairly ambiguous term but here we will
specifically assume delegates are function pointers

CS354P

UE5 DELEGATES

▸ Called in a generic, type-safe way

▸ Can be bound dynamically to an arbitrary object’s function

▸ Caller does not need to know object’s type

▸ Passed by reference to avoid memory allocation on the heap

▸ Three types:

▸ Single

▸ Multicast

▸ Dynamic

CS354P

HOW DELEGATES WORK

▸ Since delegates are function pointers, they can be bound
to valid functions

▸ Functions must match delegate’s expected signature

▸ Functions bound to the delegate will be executed in the
reverse order they were bound

CS354P

TYPES OF DELEGATES

▸ Single Delegates: only one function can be bound

▸ Called with Execute

▸ Multi-cast Delegates: multiple functions can be bound

▸ No return values

▸ Called with Broadcast

▸ Dynamic Delegates: dynamic binding of function

▸ Can be serialized and functions found by name

▸ Called with Execute (return values)/ExecuteIfBound (no return values)

▸ Note: executing a single delegate with no bindings can cause issues in
memory, since they can return values (not an issue for Multi-cast Delegates)

CS354P

DELEGATES IN ACTION

▸ Projectile Example:

▸ ProjectileMesh->OnComponentHit.AddDynamic(this,
&ALab1Projectile::OnHit);

▸ AddDynamic is a helper macro used with dynamic multi-cast delegates

▸ Dynamically binds to the function name provided as the second
parameter

▸ Delegates are intimately connected to events and the event system (user-
generated events)

▸ Also useful for system-generated events (events created by the system
itself)

CS354P

UE5 TIMERS

▸ Timers handled through the TimeManager associated with
the World

▸ GetWorldTimerManager()

▸ Use TimerHandles to distinguish timers with identical
delegates

▸ Can keep a reference to this handle to clear or pause the
unique timer

CS354P

USING TIMERS

▸ A common timer bound to a function without parameters:

▸ SetTimer(FTimerHandle & InOutHandle, UserClass * InObj,
FTimerDelegate::TUObjectMethodDelegate_Const< UserClass
>::FMethodPtr InTimerMethod, float InRate, bool InbLoop, float
InFirstDelay);

GetWorldTimerManager().SetTimer(myTimerHandle, this, &MyClass::Callback,
5.f, true, 0.f);

▸ A common timer bound to a function with parameters:

▸ SetTimer(FTimerHandle & InOutHandle, FTimerDelegate const&
InDelegate, float InRate, bool InbLoop, float InFirstDelay);

FTimerDelegate myTimerDelegate = FTimerDelegate::CreateUObject(this,
&MyClass::Callback, parameter1, parameter2, parameter3);

GetWorldTimerManager().SetTimer(myTimerHandle, myTimerDelegate, 5.f,
true, 0.f);

CS354P

CREATING CUSTOM DELEGATES
1. Declare your delegate using a macro based on the function signature

DECLARE_DYNAMIC_MULTICAST_DELEGATE(FMyDelegate);

▸ This function does not have any parameters

▸ This declaration supports multiple entities (multi-cast) and delegates that can be saved/loaded within
Blueprints (dynamic)

▸ By convention you should prefix with F

2. Declare the delegate in the .h

FMyDelegate OnEventMyDelegate;

3. Bind a function/functions to the delegate

ActorWithDelegate->OnEventMyDelegate.AddDynamic(this, &MyClass:Callback);

4. Broadcast when the event should occur

ActorWithDelegate->OnEventMyDelegate.Broadcast();

CS354P

DIFFERENCE BETWEEN AN EVENT AND A MULTI-CAST DELEGATE?

▸ Not much in practice! Events are types of multi-cast
delegates

▸ Any class can bind an event, but only the class that
declares the event can invoke the Broadcast, IsBound,
and Clear functions

▸ Has better encapsulation as event objects are exposed
publicly but do not reveal delegate class’s internal
workings

CS354P

WHY USE CUSTOM DELEGATES?

▸ If you need to do something via C++ rather than Blueprint, you will
need to

▸ Useful in situations where the non-delegate object should execute/
broadcast a function related to another object

▸ Example: Player class performs action that broadcasts to all
interactable objects. Interactable objects handle delegation and
response to simplify player package

▸ Example: Information about player interactions within GUI are
passed to objects in the world, which then handle implementing
the expected behavior themselves

CS354P

FURTHER READING

▸ A full code explanation of how to create delegates in UE4

▸ <https://www.orfeasel.com/using-delegates/>

▸ An overview of delegate types and explanations about
using them with Blueprint

▸ <https://unreal.gg-labs.com/wiki-archives/macros-and-
data-types/delegates-in-ue4-raw-c++-and-bp-exposed>

https://www.orfeasel.com/using-delegates/
https://unreal.gg-labs.com/wiki-archives/macros-and-data-types/delegates-in-ue4-raw-c++-and-bp-exposed
https://unreal.gg-labs.com/wiki-archives/macros-and-data-types/delegates-in-ue4-raw-c++-and-bp-exposed
https://unreal.gg-labs.com/wiki-archives/macros-and-data-types/delegates-in-ue4-raw-c++-and-bp-exposed

