CS344M Autonomous Multiagent Systems

Todd Hester

Department of Computer Science The University of Texas at Austin

Good Afternoon, Colleagues

Are there any questions?

- Progress reports due at beginning of class
 - 2 hard copies
 - Attach your proposals
 - Anonymized soft copy

- Progress reports due at beginning of class
 - 2 hard copies
 - Attach your proposals
 - Anonymized soft copy
- Peer reviews due next Thursday

- Progress reports due at beginning of class
 - 2 hard copies
 - Attach your proposals
 - Anonymized soft copy
- Peer reviews due next Thursday
- Prof. Stone will teach class Thursday

Self-interested, rational agent

• Self-interested:

- Self-interested: maximize own goals
 - No concern for global good

- Self-interested: maximize own goals
 - No concern for global good
- Rational:

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

Self-interested, rational agent

- Self-interested: maximize own goals
 - No concern for global good
- Rational: agents are smart
 - Ideally, will act optimally

The protocol is key

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality

Evaluation Criteria

- Social welfare
- Pareto efficiency
- Stability
- Individual Rationality
- Efficiency (computational, communication)

- Voting: maximize social good
 - result affects all

- Voting: maximize social good
 - result affects all
- Auctions: maximize profit
 - result affects buyer and seller

• Pick an integer between 1 and 20, write it down

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.
- 1st price sealed-bid auction

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.
- 1st price sealed-bid auction
- The top number is your utility

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.
- 1st price sealed-bid auction
- The top number is your utility
- Goal: as much profit as possible

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.
- 1st price sealed-bid auction
- The top number is your utility
- Goal: as much profit as possible
- Write down your bid

- Pick an integer between 1 and 20, write it down
- Draw a line under it
- Pick another number, write it under the line.
- 1st price sealed-bid auction
- The top number is your utility
- Goal: as much profit as possible
- Write down your bid
- Repeat with 2nd price sealed-bid auction
- Number under the line is your utility

• Valuations:

- Valuations:
 - private value

- Valuations:
 - private value
 - common value

- Valuations:
 - private value
 - common value
 - correlated value

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid
 - descending (Dutch)

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid
 - descending (Dutch)
 - second-price sealed-bid (Vickrey)

- Valuations:
 - private value
 - common value
 - correlated value
- Types:
 - first-price open-cry (English)
 - first-price sealed-bid
 - descending (Dutch)
 - second-price sealed-bid (Vickrey)

Revenue equivalence: private-value, risk-neutral

• You value a bunch of flowers at \$100

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey

- You value a bunch of flowers at \$100
- What strategy if auction is:
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey
- What if it's an antique?

• Vickrey, English are truthful

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?
- In common (and correlated) value case, bids lower in all mechanisms

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?
- In common (and correlated) value case, bids lower in all mechanisms
 - Why?

- Vickrey, English are truthful
- First-price sealed-bid: bidders bid lower than values
 - Private value case: why?
- In common (and correlated) value case, bids lower in all mechanisms
 - Why? Winner's curse

• How could you collude?

- How could you collude?
 - English

- How could you collude?
 - English
 - first-price sealed-bid

- How could you collude?
 - English
 - first-price sealed-bid
 - Descending

- How could you collude?
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey

- How could you collude?
 - English
 - first-price sealed-bid
 - Descending
- Vickrey
- Incentive to break coalition?

- How could you collude?
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey
- Incentive to break coalition?
- Does everyone need to be in collusion?

- How could you collude?
 - English
 - first-price sealed-bid
 - Descending
 - Vickrey
- Incentive to break coalition?
- Does everyone need to be in collusion?

• Application of auctions to robot soccer?

- Auctions: maximize profit
 - result affects buyer and seller
- Voting: maximize social good
 - result affects all

• Example: Bush, Gore, or Nader?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?

Todd Hester

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

- Example: Bush, Gore, or Nader?
 - Assume your preference is Nader > Gore > Bush
 - For whom should you vote?
 - What if we change the system?
 - Plurality, Binary, Borda?
- 3+ candidates \implies only dictatorial system eliminates need for tactical voting
 - One person appointed
- No point thinking of a "better" voting system
- Assumption: no restrictions on preferences

What about Clarke tax algorithm?

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader

Todd Hester

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated
 e.g. in Borda protocol

Types of Tactical Voting

- Compromising: Rank someone higher to get him/her elected
 - e.g. Gore instead of Nader
- Burying: Rank someone lower to get him/her defeated
 - e.g. in Borda protocol
- Push-over: Rank someone higher to get someone else elected
 - e.g. in a protocol with multiple rounds

Arrow's Theorem

Universality.

Arrow's Theorem

Universality. The voting method should provide a complete ranking of all alternatives from any set of individual preference ballots.

Pareto optimality.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Criterion of independence of irrelevant alternatives.

Pareto optimality. If everyone prefers X to Y, then the outcome should rank X above Y.

Criterion of independence of irrelevant alternatives. If one set of preference ballots would lead to an an overall ranking of alternative X above alternative Y and if some preference ballots are changed without changing the relative rank of X and Y, then the method should still rank X above Y.

Citizen Sovereignty.

Todd Hester

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Non-dictatorship.

Citizen Sovereignty. Every possible ranking of alternatives can be achieved from some set of individual preference ballots.

Non-dictatorship. There should not be one specific voter whose preference ballot is always adopted.

Universality.

Universality. Complete rankings

Universality. Complete rankings

Pareto optimality.

Universality. Complete rankings

Pareto optimality. X > Y if all agree

Universality. Complete rankings

Pareto optimality. X > Y if all agree

Citizen Sovereignty.

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship.

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

- Universality. Complete rankings
- **Pareto optimality.** X > Y if all agree
- Citizen Sovereignty. Any ranking possible
- Non-dictatorship. No one voter decides
- Independence of irrelevant alternatives.

- Universality. Complete rankings
- **Pareto optimality.** X > Y if all agree
- Citizen Sovereignty. Any ranking possible
- Non-dictatorship. No one voter decides
- Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner

Pareto optimality. X > Y if all agree

Citizen Sovereignty. Any ranking possible

Non-dictatorship. No one voter decides

Independence of irrelevant alternatives. Removing or adding a non-winner doesn't change winner

Not all possible!

 Strategy proof under weaker irrelevant alternatives criterion

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set

- Strategy proof under weaker irrelevant alternatives criterion
- A pairwise method
- Smith set: smallest set of candidates such that each candidate in the set preferred over each candidate not in the set
- Every candidate in the Smith set is relevant

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B :

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \implies B > A$

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

• Does that solve everything?

- 48: A > B > C
- 40: B > C > A
- 12: C > B > A
- A vs. B : $48 52 \Longrightarrow B > A$
- A vs. C : $48 52 \Longrightarrow C > A$
- B vs. C : $88 12 \Longrightarrow B > C$

Overall: B > C > A

• Does that solve everything? What about cycles?

