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Abstract

This paper introduces Copa, an end-to-end conges-
tion control algorithm that uses three ideas. First, it
shows that a target rate equal to 1/(δdq), where dq is
the (measured) queueing delay, optimizes a natural func-
tion of throughput and delay under a Markovian packet
arrival model. Second, it adjusts its congestion window
in the direction of this target rate, converging quickly to
the correct fair rates even in the face of significant flow
churn. These two ideas enable a group of Copa flows
to maintain high utilization with low queuing delay.
However, when the bottleneck is shared with loss-based
congestion-controlled flows that fill up buffers, Copa, like
other delay-sensitive schemes, achieves low throughput.
To combat this problem, Copa uses a third idea: detect
the presence of buffer-fillers by observing the delay evolu-
tion, and respond with additive-increase/multiplicative
decrease on the δ parameter. Experimental results
show that Copa outperforms Cubic (similar throughput,
much lower delay, fairer with diverse RTTs), BBR and
PCC (significantly fairer, lower delay), and co-exists well
with Cubic unlike BBR and PCC. Copa is also robust
to non-congestive loss and large bottleneck buffers, and
outperforms other schemes on long-RTT paths.

This version corrects two errors in the camera-ready version published at NSDI 2018 (and provided as
errata notes in the proceedings) in evaluation sections §5.1 and §5.6. It also includes other minor updates.

1 Introduction

A good end-to-end congestion control protocol for the In-
ternet must achieve high throughput, low queueing delay,
and allocate rates to flows in a fair way. Despite three
decades of work, these goals have been hard to achieve.
One reason is that network technologies and applications
have been continually changing. Since the deployment
of Cubic [18] and Compound [40, 38] a decade ago to
improve on Reno’s [21] performance on high bandwidth-
delay product (BDP) paths, link rates have increased
significantly, wireless (with its time-varying link rates)
has become common, and the Internet has become more
global with terrestrial paths exhibiting higher round-trip
times (RTTs) than before. Faster link rates mean that
many flows start and stop quicker, increasing the level
of flow churn, but the prevalence of video streaming
and large bulk transfers (e.g., file sharing and backups)
means that these long flows must co-exist with short

ones whose objectives are different (high throughput ver-
sus low flow completion time or low interactive delay).

At the same time, application providers and users
have become far more sensitive to performance, with
notions of “quality of experience” for real-time and
streaming media [5, 39], and various metrics to measure
Web performance being developed [14, 15, 4, 6, 30].
Many companies have invested substantial amounts of
money to improve network and application performance.
Thus, the performance of congestion control algorithms,
which are at the core of the transport protocols used to
deliver data on the Internet, is important to understand
and improve.

Congestion control research has evolved in multiple
threads. One thread, starting from Reno and extending
to Cubic and Compound, relies on packet loss (or
ECN) as the fundamental congestion signal. Because
these schemes fill up network buffers, they incur
high queueing delays, which makes it difficult for
interactive or Web-like applications to achieve good
performance when long-running flows also share a
buffered bottleneck link. To address this problem,
schemes like Vegas [7] and FAST [42] use delay, rather
than loss, as the congestion signal. Unfortunately, these
schemes are prone to overestimate delay for various
reasons (including ACK compression and network
jitter), and therefore under-utilize the link. Moreover,
when run with concurrent loss-based algorithms, these
methods achieve poor throughput because loss-based
methods must fill buffers to elicit a congestion signal.

A third thread of research has focused on important
special cases of network environments or workloads,
rather than strive for generality. The past few
years have seen new congestion control methods for
datacenters [1, 2, 3, 36], cellular networks [44, 46], Web
applications [12], video streaming [13, 25], vehicular
Wi-Fi [11, 26], and more. The performance of
special-purpose congestion control methods is often
significantly better than prior general-purpose schemes.

A fourth, and most recent, thread of end-to-end
congestion control research has argued that the space of
congestion control signals and actions is too complicated
for human engineering, and that algorithms can pro-
duce better actions than humans (e.g., Remy [37, 43],
PCC [9], and PCC-Vivace [10]). These approaches de-



fine an objective function to guide the process of coming
up with the set of online actions (e.g., on every ACK,
or periodically) that will optimize the specified function.
Remy performs this optimization offline, producing
rules that map observed congestion signals to sender
actions. PCC and Vivace perform online optimizations.

In many scenarios these objective-optimization meth-
ods outperform the more traditional window-update
schemes [9, 43]. Their drawback, however, is that
the online rules executed at runtime are much more
complex and hard for humans to reason about (e.g., a
typical Remy controller has over 200 rules). A scheme
that uses online optimization requires the ability to
measure the factors that go into the objective function,
which may take time to obtain; for example, PCC’s
default objective function incorporates the packet loss
rate, but it will take considerable time to estimate it
on a path with a low packet loss rate.

We ask whether it is possible to develop a congestion
control algorithm that achieves the goals of high
throughput, low queueing delay, and fair rate alloca-
tions, but which is also simple to understand, general
in its applicability to a wide range of environments and
workloads, and performs at least as well as the best
prior special-purpose schemes.

Approach: We have developed Copa, an end-to-end
congestion control method that achieves these goals.
Inspired by work on Network Utility Maximization
(NUM) [23] and by machine-generated algorithms,
we start with an objective function to optimize. The
objective function we use combines a flow’s average
throughput, λ , and packet delay (minus propagation
delay), d: U = log λ −δ log d. The goal is for each
sender to maximize its U. Here, δ determines how
much to weigh delay compared to throughput; a larger
δ signifies that lower packet delays are preferable.

We show that under certain simplified (but reason-
able) modeling assumptions of packet arrivals, the
steady-state sending rate (in packets per second) that
maximizes U is

λ =
1

δ ·dq
, (1)

where dq is the mean per-packet queuing delay (in
seconds), and 1/δ is in units of MTU-sized packets.
When every sender transmits at this rate, a unique,
socially-acceptable Nash equilibrium is attained.

We use this rate as the target rate for a Copa
sender. The sender estimates the queuing delay using
its RTT observations, and moves quickly toward
hovering near this target rate. This mechanism
also induces a property that the queue is regularly
almost flushed, which helps all endpoints get a correct
estimate of the minimum RTT. Finally, to compete

well with buffer-filling competing flows, Copa mimics
an AIMD window-update rule when it observes that
the bottleneck queues rarely empty.

Results: We have conducted several experiments
in emulation, over real-world Internet paths and in
simulation comparing Copa to several other methods.
1. As flows enter and leave an emulated network,

Copa maintains nearly full link utilization with a
median Jain’s fairness index of 0.93. The median
indices for Cubic, BBR and PCC are 0.90, 0.73
and 0.60 respectively (higher the better).

2. In real-world experiments Copa achieved nearly
as much throughput and 2-10× lower queueing
delays than Cubic and BBR.

3. In datacenter network simulations, on a web
search workload trace drawn from datacenter
network [16], Copa achieved ≈ 4× reduction in
flow completion time for short flows over DCTCP.
It achieved similar performance for long flows.

4. In experiments on an emulated satellite path,
Copa achieved nearly full link utilization with
a median queuing delay of only 1 ms. Remy’s
performance was similar, while PCC achieved
similar throughput but with ≈700 ms of queuing
delay. BBR obtained ≈50% link utilization. Both
Cubic and Vegas obtained < 4% utilization.

5. In an experiment to test RTT-fairness, Copa, Cu-
bic, Cubic over CoDel and Newreno obtained Jain
fairness indices of 0.76, 0.12, 0.57 and 0.37 re-
spectively (higher the better). Copa is designed
to coexist with TCPs (see section §2.2), but when
told that no competing TCPs exist, Copa allocated
equal bandwidth to all flows (fairness index ≈1).

6. Copa co-exists well with TCP Cubic. On a set
of randomly chosen emulated networks where
Copa and Cubic flows share a bottleneck, Copa
flows benefit and Cubic flows aren’t hurt (upto
statistically insignificant differences) on average
throughput. BBR and PCC obtain higher
throughput at the cost of competing Cubic flows.

2 Copa Algorithm

Copa incorporates three ideas: first, a target rate to
aim for, which is inversely proportional to the measured
queueing delay; second, a window update rule that
depends moves the sender toward the target rate; and
third, a TCP-competitive strategy to compete well
with buffer-filling flows.

2.1 Target Rate and Update Rule

Copa uses a congestion window, cwnd, which
upper-bounds the number of in-flight packets. On
every ACK, the sender estimates the current rate
λ = cwnd/RTTstanding, where RTTstanding is the



smallest RTT observed over a recent time-window, τ.
We use τ=srtt/2, where srtt is the current value of the
standard smoothed RTT estimate. RTTstanding is the
RTT corresponding to a “standing” queue, since it’s
the minimum observed in a recent time window.
The sender calculates the target rate using Eq. (1),

estimating the queueing delay as

dq=RTTstanding−RTTmin, (2)

where RTTmin is the smallest RTT observed over a
long period of time. We use the smaller of 10 seconds
and the time since the flow started for this period (the
10-second part is to handle route changes that might
alter the minimum RTT of the path).
If the current rate exceeds the target, the sender

reduces cwnd; otherwise, it increases cwnd. To avoid
packet bursts, the sender paces packets at a rate of
2·cwnd/RTTstanding packets per second. Pacing also
makes packet arrivals at the bottleneck queue appear
Poisson as the number of flows increases, a useful
property that increases the accuracy of our model to
derive the target rate (§4). The pacing rate is double
cwnd/RTTstanding to accommodate imperfections in
pacing; if it were exactly cwnd/RTTstanding, then the
sender may send slower than desired.
The reason for using the smallest RTT in the recent

τ=srtt/2 duration, rather than the latest RTT sample,
is for robustness in the face of ACK compression [47]
and network jitter, which increase the RTT and can
confuse the sender into believing that a longer RTT
is due to queueing on the forward data path. ACK
compression can be caused by queuing on the reverse
path and by wireless links.
The Copa sender runs the following steps on each

ACK arrival:
1. Update the queuing delay dq using Eq. (2) and srtt

using the standard TCP exponentially weighted
moving average estimator.

2. Set λt =1/(δ ·dq) according to Eq. (1).
3. If λ = cwnd/RTTstanding ≤ λt, then

cwnd = cwnd + v/(δ · cwnd), where v is a
“velocity parameter” (defined in the next step).
Otherwise, cwnd = cwnd− v/(δ · cwnd). Over 1
RTT, the change in cwnd is thus ≈v/δ packets.

4. The velocity parameter, v, speeds-up convergence.
It is initialized to 1. Once per window, the sender
compares the current cwnd to the cwnd value at
the time that the latest acknowledged packet was
sent (i.e., cwnd at the start of the current window).
If the current cwnd is larger, then set direction to
“up”; if it is smaller, then set direction to “down”.
Now, if direction is the same as in the previous
window, then double v. If not, then reset v to 1.
However, start doubling v only after the direction

has remained the same for three RTTs. Since
direction may remain the same for 2.5 RTTs in
steady state as shown in figure 1, doing otherwise
can cause v to be >1 even during steady state. In
steady state, we want v=1.

When a flow starts, Copa performs slow-start where
cwnd doubles once per RTT until λ exceeds λt. While
the velocity parameter also allows an exponential
increase, the constants are smaller. Having an explicit
slow-start phase allows Copa to have a larger initial
cwnd, like many deployed TCP implementations.
Further we limit v to ensure that cwnd can never more
than double once per RTT.

2.2 Competing with Buffer-Filling Schemes

We now modify Copa to compete well with buffer-
filling algorithms such as Cubic and NewReno while
maintaining its good properties. The problem is that
Copa seeks to maintain low queuing delays; without
modification, it will lose to buffer-filling schemes.

We propose two distinct modes of operation for Copa:

1. The default mode where δ =0.5, and
2. A competitive mode where δ is adjusted dy-

namically to match the aggressiveness of typical
buffer-filling schemes.

Copa switches between these modes depending on
whether or not it detects a competing long-running
buffer-filling scheme. The detector exploits a key Copa
property that the queue is empty at least once every
5·RTT when only Copa flows with similar RTTs share
the bottleneck (Section 3). With even one concurrent
long-running buffer-filling flow, the queue will not
empty at this periodicity. Hence if the sender sees a
“nearly empty” queue in the last 5 RTTs, it remains in
the default mode; otherwise, it switches to competitive
mode. We estimate “nearly empty” as any queuing
delay lower than 10% of the rate oscillations in the last
four RTTs; i.e., dq < 0.1(RTTmax−RTTmin) where
RTTmax is measured over the past four RTTs and
RTTmin is our long-term minimum as defined before.
Using RTTmax allows Copa to calibrate its notion
of “nearly empty” to the amount of short-term RTT
variance in the current network.

In competitive mode the sender varies 1/δ according
to whatever buffer-filling algorithm one wishes to
emulate (e.g., NewReno, Cubic, etc.). In our imple-
mentation we perform AIMD on 1/δ based on packet
success or loss, but this scheme could respond to other
congestion signals. In competitive mode, δ≤0.5. When
Copa switches from competitive mode to default mode,
it resets δ to 0.5.

The queue may be nearly empty even in the presence
of a competing buffer-filling flow (e.g., because of a
recent packet loss). If that happens, Copa will switch



Figure 1: One Copa cycle: Evolution of queue
length with time. Copa switches direction at change
points A and B when the standing queue length
estimated by RTTstanding crosses the threshold of δ̂−1.
RTTstanding is the smallest RTT in the last srtt/2
window of ACKs packets (shaded region). Feedback
on current actions is delayed by 1 RTT in the network.
The slope of the line is ±δ̂ packets per RTT.
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Figure 2: Congestion window and RTT as a function
of time for a Copa flow running on a 12 Mbit/s
Mahimahi [31] emulated link. As predicted, the period
of oscillation is ≈5RTT and amplitude is ≈5 packets.
The emulator’s scheduling policies cause irregularities
in the RTT measurement, but Copa is immune to such
irregularities because the cwnd evolution depends only
on comparing RTTstanding to a threshold.

to default mode. Eventually, the buffer will fill again,
making Copa switch to competitive mode.
Note that if some Copa flows are operating in

competitive mode but no buffer-filling flows are present,
perhaps because the decision was erroneous or because
the competing flows left the network, Copa flows once
again begin to periodically empty the queue. The
mode-selection method will detect this condition and
switch to default mode.

3 Dynamics of Copa

Figures 1 (schematic view) and 2 (emulated link) show
the evolution of Copa’s cwnd with time. In steady state,
each Copa flow makes small oscillations about the target

rate, which also is the equilibrium rate (Section 4). By
“equilibrium”, we mean the situation when every sender
is sending at its target rate. When the propagation
delays for flows sharing a bottleneck are similar and
comparable to (or larger than) the queuing delay, the
small oscillations synchronize to cause the queue length
at the bottleneck to oscillate between having 0 and
2.5/δ̂ packets every five RTTs. Here, δ̂ =(∑i1/δi)

−1.

The equilibrium queue length is (0+2.5)δ̂−1/2=1.25/δ̂

packets. When each δ = 0.5 (the default value),

1/δ̂ =2n, where n is the number of flows.
We prove the above assertions about the steady state

using a window analysis for a simplified deterministic
(D/D/1) bottleneck queue model. In Section 4 we
discuss Markovian (M/M/1 and M/D/1) queues. We
assume that the link rate, µ, is constant (or changes
slowly compared to the RTT), and that (for simplicity)
the feedback delay is constant, RTTmin≈RTT. This
means that the queue length inferred from an ACK
at time t is q(t)=w(t−RTTmin)−BDP, where w(t) is
congestion window at time t and BDP is the bandwidth-
delay product. Under the constant-delay assumption,
the sending rate is cwnd/RTT=cwnd/RTTmin.
First consider just one Copa sender. We show that

Copa remains in steady state oscillations shown in
Figure 1, once it starts those oscillations. In steady
state, v=1 (v starts to double only after cwnd changes
in the same direction for at least 3 RTTs. In steady
state, direction changes once every 2.5 RTT. Hence
v=1 in steady state.). When the flow reaches “change
point A”, its RTTstanding estimate corresponds to
minimum in the 1

2srtt window of latest ACKs. Latest
ACKs correspond to packets sent 1 RTT ago. At
equilibrium, when the target rate, λt =1/(δdq), equals
the actual rate, cwnd/RTT , there are 1/δ packets
in the queue. When the queue length crosses this
threshold of 1/δ packets, the target rate becomes
smaller than the current rate. Hence the sender begins
to decrease cwnd. By the time the flow reaches “change
point B”, the queue length has dropped to 0 packets,
since cwnd decreases by 1/δ packets per RTT, and it
takes 1 RTT for the sender to know that queue length
has dropped below target. At “change point B”, the
rate begins to increase again, continuing the cycle. The
resulting mean queue length of the cycle, 1.25/δ , is a
little higher than 1/δ because RTTstanding takes an
extra srtt/2 to reach the threshold at “change point A”.
When N senders each with a different δi share the

bottleneck link, they synchronize with respect to the
common delay signal. When they all have the same
propagation delay, their target rates cross their actual
rates at the same time, irrespective of their δi. Hence
they increase/decrease their cwnd together, behaving

as one sender with δ = δ̂ =(∑i1/δi)
−1.



To bootstrap the above steady-state oscillation,
target rate should be either above or below the current
rate of every sender for at least 1.5 RTT while each v=1.
Note, other modes are possible, for instance if cwnd
and the induced queuing delay are perfectly constant.
Nevertheless, small perturbations will cause the target
rate to go above/below every sender’s current rate,
causing the steady-state oscillations described above to
commence. So far, we have assumed v=1. In practice,
we find that the velocity parameter, v, allows the system
to quickly reach the target rate. Then it v remains
equal to 1 as the senders hover around the target.
To validate our claims empirically, we simulated a

dumbbell topology with a 100 Mbit/s bottleneck link,
20 ms propagation delay, and 5 BDP of buffer in ns-2.
We introduce flows one by one until 100 flows share
the network. We found that the above properties held
throughout the simulation. The velocity parameter v
remained equal to 1 most of the time, changing only
when flow was far from the equilibrium rate. Indeed,
these claims hold in most of our experiments, even
when jitter is intentionally added.

We have found that this behavior breaks only under
two conditions in practice: (1) when the propagation
delay is much smaller than the queuing delay and (2)
when different senders have very different propagation
delays, and the delay synchronization weakens. These
violations can cause the endpoints to incorrectly think
that a competing buffer-filling flow is present(see §2.2).
Even in competitive mode, Copa offers several
advantages over TCP, including better RTT fairness,
better convergence to a fair rate, and loss-resilience.

Median RTTstanding If a flow achieves an steady-
state rate of ≈λ pkts/s, the median standing queuing
delay, RTTstanding − RTTmin, is 1/(λδ). If the
median RTTstanding were lower, Copa would increase
its rate more often than it decreases, thus increasing
λ . Similar reasoning holds if RTTstanding were higher.
This means that Copa achieves quantifiably low delay.
For instance, if each flow achieves 1.2Mbit/s rate in
the default mode (δ = 0.5), the median equilibrium
queuing delay will be 20 ms. If it achieves 12 Mbit/s,
the median equilibrium queuing delay will be 2 ms.
In this analysis, we neglect the variation in λ during
steady state oscillations since it is small.

Alternate approaches to reaching equilibrium.
A different approach would be to directly set the current
sending rate to the target rate of 1/δdq. We experi-
mented with and analyzed this approach, but found
that the system converges only under certain conditions.
We proved that the system converges to a constant rate
when C ·∑i1/δi < (bandwidth delay product), where

C≈0.8 is a dimensionless constant. With ns-2 simula-
tions, we found this condition to be both necessary and
sufficient for convergence. Otherwise it oscillates. These
oscillations can lead to severe underutilization of the
network and it is non-trivial to ensure that we always op-
erate at the condition where convergence is guaranteed.

Moreover, convergence to a constant rate and
non-zero queuing delay is not ideal for a delay-based
congestion controller. If the queue never empties, flows
that arrive later will over-estimate their minimum
RTT and hence underestimate their queuing delay.
This leads to significant unfairness. Thus, we need a
scheme that approaches the equilibrium incrementally
and makes small oscillations about the equilibrium to
regularly drain the queues.

A natural alternative candidate to Copa’s method
is additive-increase/multiplicative-decrease (AIMD)
when the rate is below or above the target. However,
Copa’s objective function seeks to keep the queue
length small. If a multiplicative decrease is performed
at this point, severe under-utilization occurs. Similarly,
a multiplicative increase near the equilibrium point will
cause a large queue length.

AIAD meets many of our requirements. It converges
to the equilibrium and makes small oscillations about
it such that the queue is periodically emptied, while
maintaining a high link utilization (§5.1). However, if
the bandwidth-delay product (BDP) is large, AIAD
can take a long time to reach equilibrium. Hence we
introduce a velocity parameter §2.1 that moves the
rate exponentially fast toward the equilibrium point,
after which it uses AIAD.

4 Justification of the Copa Target Rate

This section explains the rationale for the target
rate used in Copa. We model packet arrivals at a
bottleneck not as deterministic arrivals as in the
previous section, but as Poisson arrivals. This is a
simplifying assumption, but one that is more realistic
than deterministic arrivals when there are multiple
flows. The key property of random packet arrivals (such
as with a Poisson distribution) is that queues build up
even when the bottleneck link is not fully utilized.

In general traffic may be burstier than predicted by
Poisson arrivals [34] because flows and packet transmis-
sions can be correlated with each other. In this case,
Copa over-estimates network load and responds by im-
plicitly valuing delay more. This behavior is reasonable
as increased risk of higher delay is being met by more
caution. Ultimately, our validation of the Copa algo-
rithm is through experiments, but the modeling assump-
tion provides a sound basis for setting a good target rate.



4.1 Objective Function and Nash Equilibrium

Consider the objective function for sender (flow) i
combining both throughput and delay:

Ui= log λi−δi log ds, (3)

where ds =dq+1/µ is the “switch delay” (total minus
propagation delay). The use of switch delay is for
technical ease; it is nearly equal to the queuing delay.
Suppose each sender attempts to maximize its own

objective function. In this model, the system will be
at a Nash equilibrium when no sender can increase
its objective function by unilaterally changing its rate.
The Nash equilibrium is the n-tuple of sending rates
(λ1,...,λn) satisfying

Ui(λ1,...,λi,...,λn)>Ui(λ1,...,λi−1,x,λi+1,...,λn) (4)

for all senders i and any non-negative x.
We assume a first-order approximation of Markovian

packet arrivals. The service process of the bottleneck
may be random (due to cross traffic, or time-varying
link rates), or deterministic (fixed-rate links, no cross
traffic). As a reasonable first-order model of the
random service process at the bottleneck link, we
assume a Markovian service distribution and use that
model to develop the Copa update rule. Assuming
a deterministic service process gives similar results,
offset by a factor of 2. In principle, senders could send
their data not at a certain mean rate but in Markovian
fashion, which would make our modeling assumption
match practice. In practice, we don’t, because: (1)
there is natural jitter in transmissions from endpoints
anyway, (2) deliberate jitter unnecessarily increases
delay when there are a small number of senders and,
(3) Copa’s behavior is not sensitive to the assumption.

We prove the following proposition about the
existence of a Nash equilibrium for Markovian packet
transmissions. We then use the properties of this
equilibrium to derive the Copa target rate of Eq. (1).
The reason we are interested in the equilibrium property
is that the rate-update rule is intended to optimize
each sender’s utility independently; we derive it directly
from this theoretical rate at the Nash equilibrium. It
is important to note that this model is being used not
because it is precise, but because it is a simple and
tractable approximation of reality. Our goal is to derive
a principled target rate that arises as a stable point of
the model, and use that to guide the rate update rule.

Lemma 1. Consider a network with n flows, with flow
i sending packets with rate λi such that the arrival at the
bottleneck queue is Markovian. Then, if flow i has the
objective function defined by Eq. (3), and the bottleneck
is an M/M/1 queue, a unique Nash equilibrium exists.

Further, at this equilibrium, for every sender i,

λi=
µ

δi(δ̂−1+1)
(5)

where δ̂ =(∑1/δi)
−1.

Proof. Denote the total arrival rate in the queue,

∑ j λ j, by λ . For an M/M/1 queue, the sum of the

average wait time in the queue and the link is 1
µ−λ

.

Substituting this expression into Eq. (3) and separating
out the λi term, we get

Ui= log λi+δi log(µ−λi−∑
j6=i

λ j). (6)

Setting the partial derivative ∂Ui
∂λi

to 0 for each i yields

δiλi+∑
j

λ j=µ

The second derivative, −1/λ2
i − δi/(µ − λ)2, is

negative.
Hence Eq. (4) is satisfied if, and only if, ∀i, ∂Ui

∂λi
=0.

We obtain the following set of n equations, one for each
sender i:

λi(1+δi)+∑
j6=i

λ j=µ.

The unique solution to this family of linear equations
is

λi=
µ

δi(δ̂−1+1)
,

which is the desired equilibrium rate of sender i.

When the service process is assumed to be determinis-
tic, we can model the network as an M/D/1 queue. The
expected wait time in the queue is 1/(2(µ−λ))−µ/2≈
1/2(µ − λ). An analysis similar to above gives the

equilibrium rate of sender i to be λi=2µ/(δi(2δ̂−1+1)),
which is the same as the M/M/1 case when each δi
is halved. Since there is less uncertainty, senders can
achieve higher rates for the same delay.

4.2 The Copa Update Rule Follows from the
Equilibrium Rate

At equilibrium, the inter-send time between packets is

τi=
1
λi
=

δi(δ̂
−1+1)
µ

.

Each sender does not, however, need to know
how many other senders there are, nor what their δi
preferences are, thanks to the aggregate behavior of
Markovian arrivals. The term inside the parentheses in
the equation above is a proxy for the “effective” number
of other senders, or equivalently the network load, and
can be calculated differently.



As noted earlier, the average switch delay for an
M/M/1 queue is ds=

1
µ−λ

. Substituting Eq, (8) for λ

in this equation, we find that, at equilibrium,

τi=δi ·ds=δi(dq+1/µ), (7)

where ds is the switch delay (as defined earlier) and dq
is the average queuing delay in the network.
This calculation is the basis and inspiration for the

target rate. The does not model the dynamics of Copa,
where sender rates change with time. The purpose
of this analysis is to determine a good target rate for
senders to aim for. Nevertheless, using steady state
formulae for expected queue delay is acceptable since
the rates change slowly in steady state.

4.3 Properties of the Equilibrium

We now make some remarks about this equilibrium.
First, by adding Eq. (5) over all i, we find that the
resulting aggregate rate of all senders is

λ =∑λ j=µ/(1+δ̂) (8)

This also means that the equilibrium queuing delay
is 1+1/δ̂ . If δi=0.5, the number of enqueued packets
with n flows is 2n+1.

Second, it is interesting to interpret Eqs. (5) and (8)
in the important special case when the δis are all the
same δ . Then, λi = µ/(δ +n), which is equivalent to
dividing the capacity between n senders and δ (which
may be non-integral) “pseudo-senders”. δ is the “gap”
from fully loading the bottleneck link to allow the
average packet delay to not blow up to ∞. The portion
of capacity allocated to “pseudo-senders” is unused and
determines the average queue length which the senders
can adjust by choosing any δ ∈ (0,∞). The aggregate
rate in this case is n·λi =

nµ

δ+n . When δis are unequal,
bandwidth is allocated in inverse proportion to δi. The
Copa rate update rules are such that a sender with
constant parameter δ is equivalent to k senders with
a constant parameter kδ in steady state.
Third, we recommend a default value of δi = 0.5.

While we want low delay, we also want high throughput;
i.e., we want the largest δ that also achieves high
throughput. A value of 1 causes one packet in the queue
on average at equilibrium (i.e., when the sender trans-
mits at the target equilibrium rate). While acceptable
in theory, jitter causes packets to be imperfectly paced
in practice, causing frequently empty queues and wasted
transmission slots when a only single flow occupies a
bottleneck, a common occurrence in our experience.
Hence we choose δ = 1/2, providing headroom for
packet pacing. Note that, as per the above equation
modeled on an M/M/1 queue, the link would be severely
underutilized when there are a small number (≤5) of

senders. But with very few senders, arrivals at the queue
aren’t Poisson and stochastic variations don’t cause the
queue length to rise. Hence link utilization is nearly
100% before queues grow as demonstrated in §5.1.
Fourth, the definition of the equilibrium point is

consistent with our update rule in the sense that every
sender’s transmission rate equals their target rate if
(and only if) the system is at the Nash equilibrium.
This analysis presents a mechanism to determine the
behavior of a cooperating sender: every sender observes
a common delay ds and calculates a common δds (if all
senders have the same δ) or its δids. Those transmitting
faster than the reciprocal of this value must reduce
their rate and those transmitting slower must increase
it. If every sender behaves thus, they will all benefit.

5 Evaluation

To evaluate Copa and compare it with other congestion-
control protocols, we use a user-space implementation
and ns-2 simulations. We run the user-space
implementation over both emulated and real links.

Implementations: We compare the performance of
our user-space implementation of Copa with Linux
kernel implementations of TCP Cubic, Vegas, Reno,
and BBR [8], and user-space implementations of Remy,
PCC [9], PCC-Vivace [10], Sprout [44], and Verus [46].
For Remy, we developed a user-space implementation
and verified that its results matched the Remy
simulator. There are many available RemyCCs. When
we found a RemyCC that was appropriate for that
network, we reported its results. We use Linux qdiscs
and Mahimahi [31] to create emulated links. Our PCC
results are for the default loss-based objective function.
Pantheon [45], an independent test-bed for congestion
control, uses the delay-based objective function for PCC.

ns-2 simulations: We compare Copa with Cubic [18],
NewReno [20], and Vegas [7], which are end-to-end pro-
tocols, and with Cubic-over-CoDel [32] and DCTCP [1],
which use in-network mechanisms.

5.1 Dynamic Behavior over Emulated Links

To understand how Copa behaves as flows arrive and
leave, we set up a 46 Mbit/s link with 20 ms RTT and
1 BDP buffer using Mahimahi. One flow arrives every
second for the first ten seconds, and one leaves every
second for the next ten seconds. The mean ± standard
deviation of the bandwidths obtained by the flows at
each time slot are shown in Figure 3. A CDF of the Jain
fairness index in various timeslots is shown in Figure 4.

Copa obtains the highest median Jain fairness index,
followed closely by Cubic. They both track the ideal
rate allocation closely. BBR and PCC respond much
more slowly to changing network conditions and fail
to properly allocate bandwidth. In experiments where
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Figure 3: Mean ± std. deviation of rates of 10 flows as they enter and leave an emulated network once a second.
The black line indicates the ideal fair allocation. Graphs for BBR, Cubic, and PCC are shown alongside Copa
in each figure for comparison. Copa and Cubic flows follow the ideal allocation closely.
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Figure 4: A CDF of the Jain indices (higher the better)
obtained at various timeslots for the dynamic behavior
experiment (§5.1). Copa achieves the highest median
Jain fairness index of 0.93 while Cubic, BBR and
PCC achieve median indices of 0.90, 0.73 and 0.60
respectively.

the network changed more slowly, they eventually
succeeded in converging to the fair allocation, but this
took tens of seconds.

This experiment shows Copa’s ability to quickly adapt
to changing environments. Copa’s mode switcher cor-
rectly functioned most of the time, detecting that no
buffer-filling algorithms were active in this period. There
were some erroneous switches to competitive mode for
a few RTTs. This happens because when flows arrive
or depart, they disturb Copa’s steady-state operation.
Hence it is possible that for a few RTTs the queue is
never empty and Copa flows can switch from default to
competitive mode. In this experiment, there were a few
RTTs during which several flows switched to competitive
mode, and their δ decreased. However, queues empty
every five RTTs in this mode as well if no competing
buffer-filling flow is present. This property enabled Copa
to correctly revert to default mode after a few RTTs.

5.2 Real-World Evaluation

To understand how Copa performs over wide-area
Internet paths with real cross traffic and packet sched-
ulers, we submitted our user-space implementation of

Copa to Pantheon [45], a system developed to evaluate
congestion control schemes. During our evaluation
period, Pantheon had nodes in six countries. Each
experiment creates flows on a particular day using each
congestion control scheme between a node and an AWS
server nearest it, and measures the throughput and
delay. We separate the set of experiments into two
categories, depending on how the node connects to the
Internet (Ethernet or cellular).

To obtain an aggregate view of performance across
the dozens of runs, we plot the average normalized
throughput and average queuing delay. Throughput is
normalized relative to the run that obtained the highest
throughput among all runs in an experiment to obtain
a number between 0 and 1. Pantheon reports the one-
way delay for every packet in publicly-accessible logs
calculated with NTP-synchronized clocks at the two
end hosts. To avoid being confounded by the systematic
additive delay inherent in NTP, we report the queuing
delay, calculated as the difference between the delay and
the minimum delay seen for that flow. Each experiment
lasts 30 seconds. Half of the experiments have one flow
lasting 30 s. The other half have three flows starting at
0, 10, and 20 seconds from the start of the experiment.
Note: we only consider experiments where the highest
throughput achieved by any flow is < 120 Mbit/s,
as our user-space program cannot measure delay at
granularity finer than one Linux jiffy (100µs) currently;
this corresponds to a target rate of 120 Mbit/s for Copa.

Copa’s performance is consistent across different types
of networks. It achieves significantly lower queueing de-
lays than most other schemes, with only a small through-
put reduction. Copa’s low delay, loss insensitivity, RTT
fairness, resistance to buffer-bloat, and fast convergence
enable resilience in a wide variety of network settings.
Vivace LTE and Vivace latency achieved excessive de-
lays in a link between AWS São Paulo and a node in
Columbia, sometimes over 10 seconds. When all runs
with > 2000 ms are removed for Vivace latency and
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Figure 5: Real-world experiments on Pantheon paths: Average normalized throughput vs. queuing delay achieved
by various congestion control algorithms under two different types of Internet connections. Each type is averaged
over several runs over 6 Internet paths. Note the very different axis ranges in the two graphs. The x-axis is flipped
and in log scale. Copa achieves consistently low queueing delay and high throughput in both types of networks.
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delays are 10× lower than BBR and Cubic, with only a modest mean throughput reduction.
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Notice the log scale on the y-axis. Schemes other than
Copa allocate little bandwidth to flows with large RTTs.

LTE, they obtain average queuing delays of 156 ms and
240 ms respectively, still significantly higher than Copa.
The Remy method used was trained for a 100× range of
link rates. PCC uses its delay-based objective function.

5.3 RTT-fairness

Flows sharing the same bottleneck link often have
different propagation delays. Ideally, they should get
identical throughput, but many algorithms exhibit
significant RTT unfairness, disadvantaging flows with
larger RTTs. To evaluate the RTT fairness of various
algorithms, we set up 20 long-running flows in ns-2
with propagation delays evenly spaced between 15 ms
and 300 ms. The link has a bandwidth of 100 Mbit/s
and 1 BDP of buffer (calculated with 300 ms delay).
The experiment runs for 100 seconds. We plot the
throughput obtained by each of the flows in Figure 6.

Copa’s property that the queue is nearly empty
once in every five RTTs is violated when such a
diversity of propagation delays is present. Hence
Copa’s mode switching algorithm erroneously shifts to
competitive mode, causing Copa with mode switching
(labeled “Copa” in the figure) to inherit AIMD’s RTT
unfriendliness. However, because the AIMD is on 1/δ

while the underlying delay-sensitive algorithm robustly
grabs or relinquishes bandwidth to make the allocation
proportional to 1/δ , Copa’s RTT-unfriendliness is
much milder than in the other schemes.

We also run Copa after turning off the mode-switching
and running it in the default mode (δ =0.5), denoted
as “Copa D” in the figure. Because the senders share a
common queuing delay and a common target rate, under
identical conditions, they will make identical decisions to
increase/decrease their rate, but with a time shift. This
approach removes any RTT bias, as shown by“Copa D”.
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Figure 7: Performance of various schemes in the
presence of stochastic packet loss over a 12 Mbit/s
emulated link with a 50 ms RTT.

In principle, Cubic has a window evolution that is
RTT-independent, but in practice it exhibits significant
RTT-unfairness because low-RTT Cubic senders are
slow to relinquish bandwidth. The presence of the
CoDel AQM improves the situation, but significant
unfairness remains. Vegas is unfair because several
flows have incorrect base RTT estimates as the queue
rarely drains. Schemes other than Copa allocate nearly
no bandwidth to long RTT flows (note the log scale),
a problem that Copa solves.

5.4 Robustness to Packet Loss

To meet the expectations of loss-based congestion
control schemes, lower layers of modern networks
attempt to hide packet losses by implementing extensive
reliability mechanisms. These often lead to excessively
high and variable link-layer delays, as in many cellular
networks. Loss is also sometimes blamed for the poor
performance of congestion control schemes across
trans-continental links (we have confirmed this with
measurements, e.g., between AWS in Europe and non-
AWS nodes in the US). Ideally, a 5% non-congestive
packet loss rate should decrease the throughput by
5%, not by 5×. Since TCP requires smaller loss rates
for larger window sizes, loss resilience becomes more
important as network bandwidth rises.

Copa in default mode does not use loss as a
congestion signal and lost packets only impact Copa to
the extent that they occupy wasted transmission slots in
the congestion window. In the presence of high packet
loss, Copa’s mode switcher would switch to default
mode as any competing traditional TCPs will back off.
Hence Copa should be largely insensitive to stochastic
loss, while still performing sound congestion control.

To test this hypothesis, we set up an emulated link
with a rate of 12 Mbit/s bandwidth and an RTT of
50 ms. We vary the stochastic packet loss rate and plot
the throughput obtained by various algorithms. Each
flow runs for 60 seconds.
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Figure 8: Flow completion times achieved by various
schemes in a simulated datacenter environment. Note
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Figure 7 shows the results. Copa and BBR remain
insensitive to loss throughout the range, validating our
hypothesis. As predicted [27], NewReno, Cubic, and
Vegas decline in throughput with increasing loss rate.
PCC ignores loss rates up to ≈5%, and so maintains
throughput until then, before falling off sharply as
determined by its sigmoid loss function.

5.5 Simulated Datacenter Network

To test how widely beneficial the ideas in Copa might
be, we consider datacenter networks, which have
radically different properties than wide-area networks.
Many congestion-control algorithms for datacenters
exploit the fact that one entity owns and controls the
entire network, which makes it easier to incorporate
in-network support [1, 3, 29, 36, 17].
Exploiting the datacenter’s controlled environment,

we make three small changes to the algorithm: (1) the
propagation delay is externally provided, (2) since it is
not necessary to compete with TCPs, we disable the
mode switching and always operate at the default mode
with δ =0.5 and, (3) since network jitter is absent, we
use the latest RTT instead of RTTstanding, which also
enables faster convergence. For computing v, the conges-
tion window is considered to change in a given direction
only if >2/3 of ACKs cause motion in that direction.
We simulate 32 senders connected to a 40 Gbit/s

bottleneck link via 10 Gbit/s links. The routers have
600 Kbytes of buffer and each flow has a propagation
delay of 12 µs. We use an on-off workload with flow
lengths drawn from a web-search workload in the
datacenter [1]. Off times are exponentially distributed
with mean 200 ms. We compare Copa to DCTCP,
Vegas, and NewReno.
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The average flow completion times (FCT) are plotted
against the length of the flow in Figure 8, with the
y-axis shown on a log-scale. Because of its tendency
to maintain short queues and robustly converge
to equilibrium, Copa offers significant reduction in
flow-completion time (FCT) for short flows. The FCT
of Copa is about a factor of 4 better for small flows
under 64 kbytes compared to DCTCP. For longer
flows, the benefits are modest, and in many cases other
schemes perform a little better in the datacenter setting.
This result suggests that Copa is a good solution for
datacenter network workloads involving short flows.

We also implemented TIMELY [28], but it did
not perform well in this setting (over 7 times worse
than Copa on average), possibly because TIMELY
is targeted at getting high throughput and low delay
for long flows. TIMELY requires several parameters
to be set; we communicated with the developers and
used their recommended parameters, but the difference
between our workload and their RDMA experiments
could explain the discrepancies; because we are not
certain, we do not report those results in the graph.

5.6 Emulated Satellite Links

We evaluate Copa on an emulated satellite link using
measurements from the WINDS satellite system [33],
replicating an experiment from the PCC paper [9].
The link has a 42 Mbit/s capacity, 800 ms RTT, 1
BDP of buffer and 0.74% stochastic loss rate, on which
we run 2 concurrent flows for 100 seconds. This link
is challenging because it has a high bandwidth-delay
product and some stochastic loss.

Figure 9 shows the total throughput v. delay plot for
BBR, PCC, Remy, Cubic, Vegas, and Copa. Here we
use a RemyCC trained for a RTT range of 30-280 ms for
2 senders with exponential on-off traffic of 1 second, each

over a link speed of 33 Mbit/s, which was the best per-
former among the ones available in the Remy repository.
PCC obtained high throughput, but at the cost of

high delay as it tends to fill the buffer. BBR ignores
loss, but still underutilized the link as its rate oscillated
between 0 and over 42 Mbit/s due to the high BDP,
with these oscillations also causing high delays. Copa
is insensitive to loss and scales to large BDPs due to
its exponential rate update. Both Cubic and Vegas are
sensitive to loss and hence lose throughput.

5.7 Co-existence with Buffer-Filling Schemes

A major concern is whether current TCP algorithms
will simply overwhelm the delay-sensitivity embedded
in Copa. We ask: (1) how does Copa affects existing
TCP flows?, and (2) do Copa flows get their fair share
of bandwidth when competing with TCP (i.e., how
well does mode-switching work)?

We experiment on several emulated networks. We
randomly sample throughput between 1 and 50 Mbit/s,
RTT between 2 and 100 ms, buffer size between 0.5 and
5 BDP, and ran 1-4 Cubic senders and 1-4 senders of
the congestion control algorithm being evaluated. The
flows are run concurrently for 10 seconds. We report the
average of the ratio of the throughput achieved by each
flow to its ideal fair share for both the algorithm being
tested and Cubic. To set a baseline for variations within
Cubic, we also report numbers for Cubic, treating one
set of Cubic flows as “different” from another.
Figure 10 shows the results. Even when competing

with other Cubic flows, Cubic is unable to fully utilize
the network. Copa takes this unused capacity to
achieve greater throughput without hurting Cubic
flows. In fact, Cubic flows competing with Copa get
a higher throughput than when competing with other
Cubic flows (by a statistically insignificant margin).
Currently Copa in competitive mode performs AIMD
on 1/δ . Modifying this to more closely match Cubic’s
behavior will help reduce the standard deviation.

PCC gets a much higher share of throughput because
its loss-based objective function ignores losses until
about 5% and optimizes throughput. BBR gets higher
throughput while significantly hurting competing Cubic
flows.

6 Related Work

Delay-based schemes like CARD [22], DUAL [41], and
Vegas [7] were viewed as ineffective by much of the
community for several years, but underwent a revival
in the 2000s with FAST [42] and especially Microsoft’s
Compound TCP [40]. Recently, delay-based control has
been used in datacenters by DX [24] and TIMELY [28].
Vegas and FAST share some equilibrium properties
with Copa in the sense that they all seek to maintain
queue length in proportion to the number of flows.
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Vegas seeks to maintain between 3 and 6 packets per
flow in the queue, and doesn’t change its rate if this
target is met. Copa’s tendency to always change its
rate ensures that the queue is periodically empty. This
approach has two advantages: (1) every sender gets
the correct estimate of minimum RTT, which helps
ensure fairness and, (2) Copa can quickly detect the
presence of a competing buffer-filling flow and change
its aggressiveness accordingly. Further, Copa adapts
its rate exponentially allowing it to scale to large-BDP
networks, unlike Vegas and FAST, which increase their
rate as a linear function of time.

Network utility maximization (NUM) [23] ap-
proaches turn utility maximization problems into
rate allocations and vice versa. FAST [42] derives
its equilibrium properties from utility maximization.
Other schemes [19, 29, 35] use the NUM framework to
develop with algorithms that use in-network support.

BBR [8] uses bandwidth estimation to operate
near the optimal point of full bandwidth utilization
and low delay. Although very different from Copa in
mechanism, BBR shares some desirable properties with
Copa, such as loss insensitivity, better RTT fairness,
and resilience to bufferbloat. Experiments §5.2 show
that Copa achieves significantly lower delay and slightly
less throughput than BBR. There are three reasons
for this. First, the default choice of δ =0.5, intended
for interactive applications, encourages Copa to trade
a little throughput for a significant reduction in delay.
Applications can choose a smaller value of δ to get more
throughput, such as δ = 0.5/6, emulating 6 ordinary
Copa flows, analogous to how some applications open

6 TCP connections today. Second, BBR tries to be
TCP-compatible within its one mechanism. This forced
BBR’s designers to choose more aggressive parameters,
causing longer queues even when competing TCP flows
are not present [8]. Copa’s use of two different modes
with explicit switching allowed us to choose more con-
servative parameters in the absence of competing flows.
Third, both BBR and Copa seek to empty their queues
periodically to correctly estimate the propagation delay.
BBR uses a separate mechanism with a 10-second
cycle, while Copa drains once every 5 RTTs within
its AIAD mechanism. As shown in our evaluation
in §5.1 and §5.5, Copa is able to adapt more rapidly to
changing network conditions. It is also able to handle
networks with large-BDP paths better than BBR (§5.6).

7 Conclusion

We described the design and evaluation of Copa, a
practical delay-based congestion control algorithm for
the Internet. The idea is to increase or decrease the
congestion window depending on whether the current
rate is lower or higher than a well-defined target rate,
1/(δdq), where dq is the (measured) queueing delay. We
showed how this target rate optimizes a natural function
of throughput and delay. Copa uses a simple update
rule to adjust the congestion window in the direction
of the target rate, converging quickly to the correct fair
rates even in the face of significant flow churn.

These two ideas enable Copa flows to maintain high
utilization with low queuing delay (on average, 1.25/δ

packets per flow in the queue). However, when the
bottleneck is shared with buffer-filling flows like Cubic
or NewReno, Copa, like other delay-sensitive schemes,
has low throughput. To combat this problem, a Copa
sender detects the presence of buffer-fillers by observing
the delay evolution, and then responds with AIMD on
the δ parameter to compete well with these schemes.
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A Application-Layer Benefits

Many applications benefit from accurate information
about path throughput and delay. For example,
recently there has been a surge of interest in video
streaming, where one of the primary challenges is
in estimating the correct bitrate to use. A low
estimate hurts video quality while a high estimate risks
experiencing a stall in playback. Most algorithms tend
to under-estimate rates because stalls hurt the quality
of experience more. That, in turn, means they are
unable to effectively obtain the true usable path rate.
We showed how every measurement of the queuing

delay provides a new estimate of the target rate. Hence,
to understand what throughput and delay can be ex-
pected from a path, an endpoint only needs to transmit
a few packets. The expected performance can be calcu-
lated from the measured RTT and queuing delay. These
packets can be small, containing only the header and no
data, which reduces the bandwidth consumed by probes.
Applications can use this information in many ways.

Copa offers a way for applications to obtain rate
information. Senders can use the techniques we have
developed to measure “expected throughput” – i.e., the
rate that a Copa sender will use – by sending only a few
small packets, and take an informed decision regarding
what quality of content to transfer. As shown in §5.1,
Copa’s rate estimates are accurate and senders are able
to jump directly to the correct rate.
Quick estimation of a transport protocol’s expected

transmission rate is also useful for selecting good paths
or endpoints. For instance, peer-to-peer networks
can regularly send tiny packets without payload
to monitor the throughput and delay available on
the link to a peer. The monitoring is inexpensive,
but can enable more informed decisions. Content
Distribution Networks using Copa for data delivery
can use this too, by routing requests to the appropriate
servers. For instance, they can route to minimize the
flow-completion time estimated as 2·RTT+l/λ , where
l is the flow length and λ is the rate estimate.
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