
Lecture 13: The transport
layer

Lecturer: Venkat Arun
Chapters 5.1 and 5.2 from the book

Logistics

• Assignment 3 is out
• We will vote on a proposed change to the grading structure
• Old system:

• Programming assignments (35%)
• Two quizzes (30%)
• Final exam (30%)
• Class participation (5%)

• Proposed system
• Programming assignments (40%)
• Two quizzes (30%)
• Final exam (30%)
• Class participation (5% bonus)

• Note: Cheating, for example on the class participation, will NOT be tolerated

Story so far: layers inside a single host

IP

Physical interface 1 Physical interface 2

Which interface to send a packet via is
determined by the routing table.
All received packets go to IP

TCP socket 1 UDP socket 1 TCP socket 2 What socket to send a received packet to is
determined by the src/dst IP and port
All sent packets are sent via IP

Application 2Application 1
Sockets are associated with applications

Story so far
• Physical layer

• Communication between two “adjacent” nodes.
• What constitutes as “adjacent” varies.

• Could mean they are physically close, required for most wireless networks.
• Could be connected via a wire, or be on the same local ethernet network
• You could call the communication link between Voyager 1 and the earth a single physical link!

• Network layer (IP)
• Offers global, best-effort packet delivery between any two nodes on the internet*
• The only layer of the internet which constitutes a single protocol. In all the other layers, there are

alternatives. Thus, IP is called the “narrow waist” of the internet
• Transport layer

• Offers process-to-process communication
• There are multiple protocols specified by an 8-bit field in the IP header
• TCP (#6) and UDP (#17) are the most common ones used by applications.
• Routing protocols often have their own protocol numbers.
• Most assigned numbers are no longer widely used:

https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

*Like most things in this course, there are exceptions. Sometimes we use IP inside local networks. Firewalls
also prevent global connectivity. But let us not miss the forest for the trees.

https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

UDP – A simple encapsulation over IP

• Super simple header format:
• Source and destination port – used to determine which socket gets the

packet
• Checksum – Error detecting code for the UDP header and data
• Length and data – Self explanatory

• Only function is to tell which process to forward the packet to
• Inherits IP’s best-effort nature

Offset Octet 0 1 2 3
Octet Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 Source Port Destination Port
4 32 Length Checksum
8… 64… Data

Header format

https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit

TCP – A more feature-rich transport layer

TCP has three features:
• Flow control: Ensures the receiver has enough memory to receive

packets sent by the sender
• Reliable delivery: Guarantees that bytes will appear at the

receiver in the same order that they were sent. If packets are
dropped, it retransmits them

• Congestion control: Controls the rate at which the sender sends
packets.

• If it is too fast, the network may get overloaded and drop packets.
• If it is too slow, performance suffers
• If multiple TCP flows are bottlenecked at the same link, it tries to ensure that both

are sending at roughly the same rate

This week

Next week

TCP communication structure

Sender Receiver

Packet containing
bytes 0-1000

• Application gives the sender a sequence of bytes. Each byte is
assigned a sequence in order. That is, the first byte gets sequence
number 0, the second byte gets number 1 and so on…

Packet containing
bytes 1000-2000

I acknowledge that
I got bytes 0-2000

I acknowledge that
I got bytes 0-1000

Note: receiver always
acknowledges all the bytes that it
got. It can even say “I
acknowledge that I got bytes 0-
2000 and 4000-6000” if it did not
get bytes 2000-400

TCP is bidirectional

• Thus far, I’ve used the language of “sender” and “receiver” when
discussing TCP

• In reality, TCP is bidirectional. That is, each packet can contain
data to be sent and an acknowledgment of data sent by the other
side

• It is nevertheless easier to think of one end as the sender and the
other as a receiver

Flow control
Disclaimer:
This lecture presents one possible way to design things. Alternate designs are
possible. In this process, sometimes I will say incorrect things about TCP. We
will fix all inaccuracies by the next class.

TCP’s interface to the application in detail

Application

TCP

Send buffer holds bytes
that were sent by the app
to TCP, but have not yet
been acknowledged by
receiver

Receive buffer holds
bytes that have been
received in the order they
were sent by the other
side but have not yet been
consumed by the
application

Chunk of
memory on
receive side

TCP reserves a chunk of memory on
the receive side that holds bytes that
have been received but cannot yet be
delivered to the receive buffer because
there is a gap
E.g. if sequence numbers [0-1000] and
[2000-3000] have been received, then 0-
1000 can be delivered, but we are still
waiting to receive 2000-3000

Chunk of
memory on
send side

TCP reserves a chunk of memory on the
send side that contains bytes that have
been sent but not acknowledged. Hence,
they may have to be transmitted again

Receive window
• The previous slide showed that TCP allocates a chunk of

memory for storing bytes that have been received but not
yet consume by the application.

• The application is free to consume bytes at any rate that it
likes. Thus, if it stops consuming bytes, the sender needs to
stop sending them otherwise the receiver will run out of
memory

• To ensure this, the receiver sends a “receive window” with
each acknowledgment. This puts a cap on the maximum
number of bytes that the sender can have “in-flight”

• Definition: “in-flight bytes” is the number of bytes that the
sender has sent, but have not yet been acknowledged or
determined to be lost

• If the receiver has more spare memory than the bytes in
flight, it can never overflow

For now, assume initial
sequence number is 0 and
that there is no upper limit
on how large sequence
numbers can be

Algorithm for calculating receive window

• When a connection is initiated, allocate some total memory T
• The OS decides T based on configuration parameters and based on how much spare

memory is available. Servers that handle a lot of flows can get bottlenecked on available
memory for the receive buffer

• When X new bytes a received, reduce the receive window by X
• When the application consumes Y bytes, increase the receive window by Y
• The TCP header has a receive window field. Every packet sent by either side is

filled with the value calculated above
https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_
structure

• If the OS decides to change T, update receive window accordingly.
• Side note: depending on how this is done, memory may overflow, and packets may have

to be dropped. For instance, if the receiver suddenly reduces T to 0, then it will take
some time for the sender to be notified of this update. Until then, it will continue to send.
This is ok since TCP can handle losses via retransmission.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Reliability
TL;DR If a packet is lost, retransmit it

Recall how acknowledgments work

• The receiver acknowledges exactly which packets it received by
using a list of ranges

• In the common case, this list will have only one range: (0, last byte
received)

• If packets were lost or reordered, there may be gaps
• E.g. [(0, 10000), (11000, 13000), (14000, 20000)]

• This tells the sender that bytes (10000, 11000) and (13000, 14000)
were not used

• This gives it clues on which packets may be lost and require
retransmission

How the sender decides whether a packet
has been lost: Timeout
There are two loss detection mechanisms. The first is a timeout:
• When it sends a packet, it starts a timer that will ΔT seconds later. If the

bytes have not been acknowledged by then, it will assume that they
have been lost

• ΔT is set conservatively so that it is unlikely to fire if a packet has not
been lost. Standards have proposed using
Smoothed RTT + max(G, 4 * RTT Variation)

• Here, G is a constant (e.g. 100 ms) and RTT is the “round trip time”, the
time between when other bytes were set and when they were
acknowledged
• Smoothed RTT is the average of the RTTs measured for the last few packets
• RTT variation is the variation experienced over the last few packts

How the sender decides whether a packet
has been lost: DupACKs
There are two loss detection mechanisms. The second is “duplicate
acknowledgments (DupACK)”
• Suppose the sender receives an ACK for sequence numbers [(0,1000), (2000,

3000)]
• Can it conclude that bytes (1000, 2000) were lost?
• No, the network may reorder packets. So, the packet containing bytes (1000,

2000) may be received after the one containing (2000, 3000). In this case, the
next ACK will be [(0, 3000)]

• The convention is to wait for 3 acknowledgments where a given range of bytes
has not been ACKed before declaring loss. For example, it may declare loss
after it receives the following three ACKs:
• [(0, 1000), (2000, 3000)]
• [(0, 1000), (2000, 4000)]
• [(0, 1000), (2000, 5000)]

How the sender decides whether a packet
has been lost: DupACKs
We note the following about DupACKs
• The reason it is called a “duplicate” acknowledgment is historical
• In the previous example, each packet contains 1000 bytes. This need

not always be the case.
• The receiver sends an acknowledgment for every packet it receives*.

Thus, as long as networks do not reorder packets by more than 3, we
will not incorrectly declare loss

• Why 3? It was measured to be a good number a long time ago. Now, it is
a self-fulfilling prophecy since all links will try to limit reordering to 3.
Otherwise, TCP will go beserk and assume everything is lost

*well… this is not strictly true, but we will not bother with that here

Sequence numbers are finite

• TCP uses a 32-bit integer for the sequence number. This means
that if we send more than ~4 GB (= 2^32 bytes), the sequence
number will return to 0.

• Thus, TCP needs to handle this carefully. However this is boring,
so we will ignore this detail

• Also, for safety reasons that we will not discuss, the initial
sequence number is picked randomly. It is not 0

TCP limits the list of ranges in an ACK to 3
• This means that if the set of acknowledged bytes has more than 3 contiguous segments, the receiver

can only send 3
• For example, suppose it got the ranges:

• (0, 4000), (5000, 6000), (8000, 10000), (11000, 12000)

• Which 3 would you pick? Why?
• This is what the IETF RFC 2018 has to say on the matter (I have included this just to give you a sense of

how things are standardized. There is no need to sweat the details):
• The first SACK block (i.e., the one immediately following the kind and length fields in the option) MUST specify the

contiguous block of data containing the segment which triggered this ACK, unless that segment advanced the
Acknowledgment Number field in the header. This assures that the ACK with the SACK option reflects the most recent
change in the data receiver's buffer queue.

• The data receiver SHOULD include as many distinct SACK blocks as possible in the SACK option. Note that the
maximum available option space may not be sufficient to report all blocks present in the receiver's queue.

• The SACK option SHOULD be filled out by repeating the most recently reported SACK blocks (based on first SACK
blocks in previous SACK options) that are not subsets of a SACK block already included in the SACK option being
constructed. This assures that in normal operation, any segment remaining part of a non-contiguous block of data
held by the data receiver is reported in at least three successive SACK options, even for large-window TCP
implementations [RFC1323]). After the first SACK block, the following SACK blocks in the SACK option may be listed in
arbitrary order.

https://www.rfc-editor.org/rfc/rfc1323

When should you use TCP vs UDP?

	Slide 1: Lecture 13: The transport layer
	Slide 2: Logistics
	Slide 3: Story so far: layers inside a single host
	Slide 4: Story so far
	Slide 5: UDP – A simple encapsulation over IP
	Slide 6: TCP – A more feature-rich transport layer
	Slide 7: TCP communication structure
	Slide 8: TCP is bidirectional
	Slide 9: Flow control
	Slide 10: TCP’s interface to the application in detail
	Slide 11: Receive window
	Slide 12: Algorithm for calculating receive window
	Slide 13: Reliability
	Slide 14: Recall how acknowledgments work
	Slide 15: How the sender decides whether a packet has been lost: Timeout
	Slide 16: How the sender decides whether a packet has been lost: DupACKs
	Slide 17: How the sender decides whether a packet has been lost: DupACKs
	Slide 18: Sequence numbers are finite
	Slide 19: TCP limits the list of ranges in an ACK to 3
	Slide 20: When should you use TCP vs UDP?

