
Internet Architecture
Overview

Instructor: Venkat Arun
Fall 2024

Some graphics are borrowed from the Peterson & Davie book (referred to as P&D)

Logistics

• Assignment 1 has been posted
• Canvas and Ed Discussion are published

• Today, we shall take a high-level overview

Recap: How do we make the internet
scalable?

• Divide data into small chunks
called packets
• End hosts create packets

containing the destination
address
• The network tries its “best” to get

the packet to the destination
• Routers in the network store and

forward packets to the
(hopefully) correct next hop

Switch

How do we make it adaptable?

Principle 1: Precisely specify
interfaces between different
components, often arranged as
layers
• Everyone can have their own

implementation and yet
interoperate with each other
• When possible, allow for

flexibility within a component
without having to change the
interface (very tricky to get right)

Layering abstractions (P&D
chapter 1.3)

How do we make it adaptable?

Principle 1: Precisely specify
interfaces between different
components, often arranged as
layers
• Everyone can have their own

implementation and yet
interoperate with each other
• When possible, allow for

flexibility within a component
without having to change the
interface (very tricky to get right)

One layer can have many
abstractions

Layering abstractions (P&D
chapter 1.3)

How do we make it adaptable?
Principle 2: Move all intelligence to the end hosts
when possible
• Popularly called the “end-to-end” principle
• This way, the network is only responsible for

transporting packets from one machine to the
other.

• Further, we only expect it to put in its “best
effort”

• Everything else is handled in the end hosts:
reliability, security/encryption, assigning
meaning to the bits, and application specific
logic

• End hosts are easier to change. It is still difficult
to get consensus from everybody though

Examples where adaptation has succeeded
because of this
• Applications like zoom and slack can unilaterally

change their interfaces because they are a
single administrative entity

• Email, in contrast, cannot evolve as rapidly since
it is run by many entities through a common
protocol. However, it is much more universal

• When people realize a cryptographic technique
is broken, individual software developers slowly
start phasing it out (e.g. web browsers and web
servers). For example, people are trying to stop
using encryption mechanisms that can be
broken by quantum computers

• If a company is large enough, it can unilaterally
implement a new protocol. For example, Google
implemented a new transport protocol called
QUIC because they control a lot of browsers and
servers. Now others also use it.

Implementing layers using encapsulation

Every layer adds its own header
to the data. On the other end,
every layer removes its header

Implementing layers using encapsulation
Every layer adds its own header to
the data. On the other end, every
layer removes its header

Not all nodes will implement all
the layers. Usually, higher layers
are only implemented at the end
hosts

The picture on the right is the “OSI”
model. Nobody uses
“Presentation” and “Session”
layers anymore.

Implementing layers using encapsulation
Every layer adds its own header to the
data. On the other end, every layer
removes its header

Not all nodes will implement all the
layers. Usually, higher layers are only
implemented at the end hosts

The picture on the right is the “OSI”
model. Nobody uses “Presentation”
and “Session” layers anymore.

Layering is not followed strictly

Todays’ protocol stack

Layering is not followed strictly
HTTP is slowly becoming
another narrow waist

Internet Protocol: The
“narrow waist” of the internet

One of the few things I will
say in this course that is
(almost) always true

How can you use the internet? Sockets
C API is explained in P&D chapter 1.4
The client side is used in the assignment 1. The server side will be used in assignment 3

Server Client

