
Network Security 2:
Cryptography 2

Lecturer: Venkat Arun



Recap:

• Symmetric encryption uses a common secret key k. Anybody who 
knows k can encrypt/decrypt messages. To everybody else, the 
message is unintelligible

• Diffie-Hellman key exchange allows two strangers to use a non-
private communication channel to establish a shared secret k
• While the channel does not have to be private, it should disallow man-in-

the-middle (MITM) attacks
• Most internet paths allow for MITM attacks

• Today: Public key encryption allows for a communication channel 
to be authenticated



Public key encryption

• Alice creates a public/private key pair: (pk, sk)
• She publishes pk to the entire world saying “Hello, you know me as 

Alice, this is my public key”
• She keeps the private key sk, secret which gives her special abilities 
• A computationally limited adversary cannot derive pk from sk, even 

though it is possible with enough compute



Case in point
For example, the following is my public key that I use on GitHub and to SSH into things. I have 
absolutely no qualms about sharing it:

ssh-rsa 
AAAAB3NzaC1yc2EAAAADAQABAAACAQDsxUpCsXSz96uC68Ex6hM6pOyYliAuH0XVsR/hNAbXk5cK8xvnpe+
ono4HfvhlO6Bd4YpsFH7SkH88BRrbSkglLDWI4r0QCq5SoRsJG32Rgo7eB1tzA0Iu2bdGOlifTaI9mudeS8CpQpt
n+a8PCObDGgrvgKeCIGSU50QJSHyAPUYKsQu3XHfstTVsNIHkSNpwhFTToddGPMZPKNyp4VHAlZygCSGvmTG
xADYwLKBunAWYFmP1n5vSVyhU4MJER7QMiw+nQM9UxtxKa9m61NKrK2zElMnQQVKaiXjT4E+ZFMKC6MJ
wJYk2u46VFTBzYmlxEmBUMhztsU4qYp/OYCtTQE53lfGZJ6DRyf0GIybQIubWQQNcWbBQkfCo+KnDog0nbSQ
WP8dJvHOStBHFD6XyZzBUgWQ01Aju4I6/HhOzS+sBxJa9pu4DQgemSZkVhP1D6TA2jXU6ZAB/tRatOkS9PvVk
8cks3Nszg08ROPQXBkH1/3V3bfTRHxLzSY/Sr7yGxTZQBZ6knfQ7kT84yCSub0KHcwvARm+ux5SyhxP7c9gbMy
Uj+Vo//E8g/w2npcNefMMRu8UKIeBywCTohEGqKYL1ap0eh45ACnr/icjbIJzZFQz0tXB5dhy2GEotoSkr9iIabvD
aNGDTAtZ6PVqUK+7Zwg6lb2pYmh5i99kO1w== venkat@utexas.edu



Public key encryption: ability #1 (signing)

• Useless for encryption
• By encrypting a message, Alice can “sign” it, since only someone with 

sk could have produced an encrypted message, that when decrypted 
with pk, will produce M

sk pk

M

Alice Verifier



Public key encryption: ability #2 (assymetric 
encryption)

• Anyone who wants to communicate securely with Alice can 
encrypt their message m using Alice’s pk

• Only Alice will be able to decrypt the resulting ciphertext

Stranger on the 
internet

Stranger on the 
internet

Alice



RSA Cryptosystem
The following slides about the RSA cryptosystem are to give you a flavor of how 
it works.
In this course, you are expected to understand the basic mechanisms, but not 
the details of modular arithmetic and number theory



RSA Cryptosystem

• Private key: two large randomly chosen prime numbers p and q
• Public key: n = p * q

Primer on modular arithmetic:
𝑥𝜙(𝑛) = 1 𝑚𝑜𝑑 𝑛

where 𝜙 𝑛  is Euler’s totient function
if gcd(x, n) = 1 (i.e. they are “relatively prime”)

If n = pq, then 𝜙 𝑛 = (𝑝 − 1)(𝑞 − 1)



RSA Cryptosystem

• Private key: two large randomly chosen prime numbers p and q
• Public key: n = p * q

Assumption: If n is generated as above, then 𝜙 𝑛  is hard to 
compute

Note: If you can factor n, you can compute 
𝜙 𝑛 , but factoring is not necessary for this



Encryption using RSA

Encryption:
• Pick a message 1 < m < n such that m != p and m != q
• e is a commonly agreed constant. 

• It picked to be coprime with 𝜙(𝑛) and, for efficiency reasons, small. 𝑒 = 216 + 1 is often 
used

• Compute 𝑠 = 𝑚𝑒  (𝑚𝑜𝑑 𝑛). This is the encrypted message

Decryption:
• Pre-compute d such that 𝑑 𝑒 𝑚𝑜𝑑 𝜙 𝑛 = 1

• Decrypt 𝑚′ = 𝑠𝑑  (𝑚𝑜𝑑 𝑛)

• Private key: two large randomly chosen prime numbers p and q
• Public key: n = p * q



Key Distribution
The following material is fully a part of this course



How do I know someone’s public key?

• In SSH, you tell the machine your public key using a “trusted mechanism”, for 
example, using a web interface

• How do you secure the web interface?
• The internet has a tree of trusted authorities
• You know the public key of IPRA through “magic”. It signs the key for PCA, which 

signs the public key for the CA, which signs the public key of individual websites



The common case: TLA, your OS and the 
browser
• You computer comes pre-installed with an OS
• The OS comes pre-installed with a web browser
• The web browser comes pre-installed with a list of trusted certificate 

authorities (CA)
• Every time you go to a website using “HTTPS”, use HTTP running over TLS 

running over TCP
• TLS asks the website for how it would like to certify itself. The website returns 

its public key, signed by a CA.
• You already know the public key of the CA, so if the signature check passes, 

you ask the website to authenticate itself with its own private key. If it is able 
to do so, you trust it

• There are many omitted details here. We will discuss that in the next lecture.



Next lecture

• Practical considerations in web security
• Whom and what do we trust?
• How can we minimize that trust?
• How do we do encryption fast?
• How will quantum computers change things?


	Slide 1: Network Security 2: Cryptography 2
	Slide 2: Recap:
	Slide 3: Public key encryption
	Slide 4: Case in point
	Slide 5: Public key encryption: ability #1 (signing)
	Slide 7: Public key encryption: ability #2 (assymetric encryption)
	Slide 8: RSA Cryptosystem
	Slide 9: RSA Cryptosystem
	Slide 10: RSA Cryptosystem
	Slide 11: Encryption using RSA
	Slide 12: Key Distribution
	Slide 13: How do I know someone’s public key?
	Slide 14: The common case: TLA, your OS and the browser
	Slide 15: Next lecture

