
Lecture 22 – Practical
aspects of security

Lecturer: Venkat Arun
Parts of this lecture correspond to chapter 8.4 and 8.5.3

Securing a web connection

Also known as TLS or SSL

If this is used with HTTP,
we call it HTTPS.

This is what this icon on
your browser means:

Two steps in establishing a secure connection

1. The client’s browser needs to know which public key they can
trust for the website’s domain name
• E.g. if I am visiting bankofamerica.com, I need to be sure that the public

key based on which I am authenticating the website belongs to the actual
bank. Otherwise, I will give my login password to someone else!

• While technically straightforward, maintaining trust is extremely hard

2. Establish a secure connection given this public key
• We’ll study step 2 first

Step 2: Establishing a secure
connection
Assuming there is a way for the client to trust the public key

Step 2: Establish a secure connection

Client Server

Here is the list of cryptosystems I support: RSA,
Elliptic curve version X, post quantum secure
systems…

It is important that both parties use a cryptosystem they are
comfortable with. This allows for the internet to slowly (or quickly)
move to new systems when old ones become compromised

For example, the MD5 hash function was broken in 2005. Similarly,
quantum computers will break RSA if and when they become real

I want to use RSA with Diffie Hellman key exchange
using AES (… and a few other parameter choices)

Step 2: Establish a secure connection

Client ServerI want to use RSA with Diffie Hellman key exchange
using AES (… and a few other parameter choices)

Here is the list of cryptosystems I support: RSA,
Elliptic curve version X, post quantum secure
systems…

Also, here is my public key (pk) and here is the certificate
from someone you trust that it is indeed my public key

Here is a symmetric key Encpk(k). We will use AES to
encrypt all our communications using the key k,
which I picked randomly. k is encrypted with pk so
nobody else can read it

Problem: Forward secrecy

If someone stores a transcript of the previous communication, and
later the server’s private key (sk) becomes compromised, they can
decrypt everything
Mechanisms that prevent this are said to have forward secrecy

Client Server

Let’s do a Diffie Hellman key exchange. I’ll pick a secret a. I’ll give you Encpk(ga)

Now, gab can become our secret key which we will use for symmetric
encryption. Even if someone later learns sk, they can learn ga and gb but not gab

I will pick a secret b. Here is gb along with everything
else I sent you earlier

Problem: RSA is slow

• The prime numbers involved are often 2048 bits long. It takes ~1 ms to
exponentiate such a large number on a modern computer

• This is why we used the DH key exchange to ensure forward secrecy.
DH can often work with 160-bit keys and is hence faster
• This is only true when using elliptic curves, which we have not discussed in this

class. The method we discussed 2 lectures ago is just as slow as RSA

• However, DH is also slow. This is why we transition to a symmetric
encryption scheme like AES for encrypting the actual data. The other
schemes are used only for connection establishment

Step 2: Establishing trust in the
public key
Suppose the client is talking to a server that claims to be X (say, google.com)
The server authenticates itself using pk.
How does the client know that pk belong to X?

Step 1: How does the browser know what pk
to trust?

• Internet policy Registration Authority (IPRA): Sets the standards
for everyone to follow. Doesn’t actually sign anything

• Policy/Root Certification Authority (PCA/RCA): Web browsers
are pre-installed with a set of PCA’s public keys that can be
trusted. The corresponding private key must be kept secure for
a decade or more. Thus, it is kept offline most of the time and
brought online only when a new CA’s public key needs to be
signed.

• CA: Signs the public keys of individual websites. Anyone who
owns a domain name can pick a new public key and request a
CA to sign it after proving that they indeed own the domain
name (e.g. using human verification)

This system is called a Public Key Infrastructure

Note: There is a difference between an
RCA and a PCA, but we will ignore it

How do we digitally sign things?

Recap:
• Suppose we want to sign something with the key pair (pk, sk).
• sk is two prime numbers (𝑝, 𝑞) and a public choice of 𝑒
• pk is 𝑛 = 𝑝𝑞 and 𝑑 such that 𝑒𝑑 = 1 𝑚𝑜𝑑 𝜙(𝑛)

• If we have a message m represented as an integer in the range 1 <
m < n, we can sign it as sign = 𝑚𝑑 𝑚𝑜𝑑 𝑛 and send (sign, m) to
the verifier

• The verifier knows pk and checks the signature using
𝑠𝑖𝑔𝑛 𝑒 𝑚𝑜𝑑 𝑛 == 𝑚

How do we digitally sign things?

• If the message is not an integer in the range (1, n), we can convert it to
such an integer using a collision resistant hash function such as
SHA256

• A collision resistant hash function, H, is a deterministic function that
takes an arbitrary sequence of bytes as input and produces an output
in a fixed range (say, a 256-bit number)
• It guarantees that it is computationally hard to find a collision. That is, find 𝑥 ≠ 𝑦

such that 𝐻 𝑥 = 𝐻(𝑦) even though such inputs certainly exist (why?)
• This means that, if someone signed H(x), it is impossible for an adversary to

claim they actually signed a different message by finding a collision
• Linux and OSX machines usually have a program called “shasum” that

can compute the hash function of any file
• Live demo

Live Demo: Inspecting a certificate

Entrust is a certificate authority whose public key my browser trusts
Entrust “signs” Bank of America’s public key. It links the key to the
domain name “bankofamerica.com” and the legal entity in the US

Live Demo: Contents of a certificate

Semi-legal info
Not all CAs do a deep legal verification. For
example, LetsEncrypt, another CA just
technically verify whether the entity
registering controls the domain name.

This is fine for most websites, but if my bank
used it, I’d be scared (personal opinion)

All certificates have a validity period. By
keeping this short, we can ensure that even
if the secret key is compromised, its effects
do not last very long.

Who guards the guards? How do I know I can
trust the Certification Authority? By asking
the root Certification Authority of course!

Live Demo: Contents of a certificate (…contd)

The technical information about the
public key

“Modulus” is the n = pq we discussed
in the last lecture

“Exponent” is the e we discussed in
the last lecture

Live Demo: Other notes

• If you check the validity period for the certificate issued to the bank, it
is shorter than the one issued to the CA, which is in turn shorter than
the one the RCA issued to itself (this self-issued certificate came pre-
installed with the web browser)

• Surprisingly, and worryingly, the validity for bankofamerica.com is
shorter than google.com!

• If secret keys get compromised, there are ways to revoke certificates
before the expiration date (called “valid before” in the previous slide).
These mechanisms are not perfect

Should you implement custom cryptography?

Are you an expert who has studied
the field for decades? Do you

know lots of potential attacks and
how to defend against them?

NO

No Yes

Assignment 5

• Will be released on Monday
• Will ask you to implement custom cryptography :)

Why you should not implement
your own custom cryptography?
Note: the following slide will not be a part of any exam.
For the final assignment, you need to be aware of some of the pitfalls, which
will be explained in the document

Examples of pitfalls in the RSA cryptosystem

• Pitfall 1: If you encrypt a message m by simply computing 𝑒𝑚 𝑚𝑜𝑑 𝑛, people
without sk cannot decrypt your message. However, they can tell when you
encrypt the same message twice
• The solution is to add some random bits to m so that you never encrypt the same

message
• Pitfall 2: If you encrypt the same message n times using enough different

public keys, it is not possible to detect duplicates. However, if you do this
enough times, it is possible to fully recover the key!

• Pitfall 3: The exact way in which randomness is added matters and has been
used to create attacks

• Pitfall 4: The amount of time it takes to encrypt a message can reveal the
message or even the secret key. These are called timing side channel attacks

• Pitfall 5: The power consumed when encrypting/decrypting has also been
used to recover secret keys

	Slide 1: Lecture 22 – Practical aspects of security
	Slide 2: Securing a web connection
	Slide 3: Two steps in establishing a secure connection
	Slide 4: Step 2: Establishing a secure connection
	Slide 5: Step 2: Establish a secure connection
	Slide 6: Step 2: Establish a secure connection
	Slide 7: Problem: Forward secrecy
	Slide 8: Problem: RSA is slow
	Slide 9: Step 2: Establishing trust in the public key
	Slide 10: Step 1: How does the browser know what pk to trust?
	Slide 11: How do we digitally sign things?
	Slide 12: How do we digitally sign things?
	Slide 13: Live Demo: Inspecting a certificate
	Slide 14: Live Demo: Contents of a certificate
	Slide 15: Live Demo: Contents of a certificate (…contd)
	Slide 16: Live Demo: Other notes
	Slide 17: Should you implement custom cryptography?
	Slide 18: Assignment 5
	Slide 19: Why you should not implement your own custom cryptography?
	Slide 20: Examples of pitfalls in the RSA cryptosystem

