
Lecture 4: Spanning Tree
Routing

CS 356: Introduction to Computer Networks
Instructor: Venkat Arun

P&D Chapter 3.2
Borrows some images from “Computer Networks: A Systems Approach” by Peterson and Davie

Recap

There are three types of addresses commonly used on the internet.
We build up the higher layers of addressing from the lower layers
• Ethernet addresses: Completely flat. Only guarantee* is that the

addresses are unique
• IP addresses: Hierarchical address. Depends on where the device

is on the internet
• Domain name: Human interpretable. DNS maps domain name to

IP address. For performance optimization, mapping may depend
on where the user is

*terms and conditions apply ☺

Simple ethernet bridge
table = {}

def pkt_recv(pkt):

 # Update the table

 if pkt.src_addr not in table:

 # Do not confuse port of the bridge with TCP/UDP port number

 table[pkt.src_addr] = pkt.src_port

 # Forward the packet

 if pkt.dst_addr in table:

 forward(table[pkt.dst_addr], pkt)

 else:

 for port in all_ports:

 forward(port, pkt)

def forward(port, pkt):

 if port != pkt.src_port:

 # Send pkt on port

This technique fails when there are cycles

Suppose `table` is empty for all the switches. When host A sends a packet to B,
the packets will circulate forever inside the network on all the switches because
they forward it indefinitely

Quick and dirty fixes

• Remember all packets that a switch sent. Do not forward the same
packet twice
• If an end host sends identical packets, say to retransmit information, the

network will refuse to forward the second one
• Switches need a lot of fast memory
• Q: How does this compare to updating the routing table?

• Create a “time to live (TTL)” field in the packet. Switches decrement it
each time. If it reaches 0, they do not forward
• Much lower overhead
• Avoids infinite circulation, but packets can still circulate
• IP headers have a TTL field, but it is used as a safety mechanism, not the first

line of defense
• Note: we are talking of ethernet here. Ethernet bridges ignore IP headers

Proper fix: switches should enough links that
cycles no longer exist

Goal: All nodes should be connected, but there should be no cycles => tree

Q: Should the network admin just avoid adding those extra links in the first place
then?

Q: How would you do this?

Three approaches

• Have a centralized server run a routing algorithm (here, spanning tree)
and tell everyone which links to turn on
• Essential idea behind Software Defined Networking (SDN)
• Problems?
• Single point of failure. Plus, what happens if we cannot reach this centralized

server?
• Design a distributed algorithm where each switch operates

independently and yet the system converges to a good answer
• Self repairing and more resilient to failures
• Algorithms harder to design, but are a one-time effort
• Today, it is the fallback option when SDN fails. SDN is optional, self-repairing

networks are not
• Cop out: get a human to fix issues

• Sometimes needed even today

Distributed spanning tree algorithm

Strategy:
• All switches pick a common “root” switch
Whichever has the lowest ethernet address (assumes unique addresses)

• All other switches select the shortest path to that root switch. Any links
not on the shortest path of at least one switch are removed

If two paths have the same length, pick hop with lower ethernet address

• If information is stale, timeout so that if a link fails, we pick a different tree

PS: Distributed algorithms are always hard

Logic at each switch

• If I think I am the root switch:
• Tell all my neighbors that I have a path to the root (me) with 0 hops
• If someone advertises a path to a root with address smaller than me, stop

thinking that I am the root switch and start thinking they are the root
switch

• If I think someone else (say X) is the root switch
• Keep track of the shortest path to X that anyone has advertised
• Tell all my neighbors about this shortest path to X
• If someone else advertises a path to X that is shorter than mine, update

my idea of a shortest path. Re-advertise

Logic at each switch: handling failures

• If I think I am the root switch:
• Tell all my neighbors that I have a path to the root (me) with 0 hops
• If someone advertises a path to a root with address smaller than me, stop

thinking that I am the root switch and start thinking they are the root switch
• Periodically advertise myself to my neighbors to assure them I’m “alive”

• If I think someone else (say X) is the root switch
• Keep track of the shortest path to X that anyone has advertised
• Tell all my neighbors about this shortest path to X
• If someone else advertises a path to X that is shorter than mine, update my idea

of a shortest path. Re-advertise
• Upon receiving a periodic message, create corresponding update to other

neighbors
• If I haven’t heard from the root in a while, start thinking that I’m root again

Distributed spanning tree algorithm

• Is this guaranteed to produce a tree?

• Will the tree be “optimal”? What does “optimal” mean?

• Does the best routing scheme always lead to a tree?

	Slide 1: Lecture 4: Spanning Tree Routing
	Slide 2: Recap
	Slide 3: Simple ethernet bridge
	Slide 4: This technique fails when there are cycles
	Slide 5: Quick and dirty fixes
	Slide 6: Proper fix: switches should enough links that cycles no longer exist
	Slide 7: Q: How would you do this?
	Slide 8: Three approaches
	Slide 9: Distributed spanning tree algorithm
	Slide 10: Logic at each switch
	Slide 11: Logic at each switch: handling failures
	Slide 12: Distributed spanning tree algorithm

