
Lecture 9: Physical layer - Error 
detection and reliable 

transmission
Lecturer: Venkat Arun

Some slides borrowed from Daehyoek Kim



Recap: bit synchronization
1          0            0            0           1           1            0              1            1

What the sender intended

1           0               0                  1                  0?                    1             0

What the receiver saw because 
its clock was slower (effect 
exaggerated here for clarity)



Recap: Signal bandwidth 
Low baud rate

High baud rate

time

time frequency

frequency

Low bandwidth

High bandwidth

Note: we are trying to walk a fine line between 
giving enough background that you understand 
the engineering tradeoffs, without making this a 
signals course



Recap: Sending multiple signals on the same 
medium
It is possible to “shift” the signal in the frequency domain by 
multiplying it with a sinusoid

frequency



Recap: Sending multiple signals on the same 
medium
This means, we can send multiple independent 
streams on the same physical channels by shifting 
them by different amounts

Why would we want to do this?
1. If the electronics limit the baud rate. Usually, it 

is difficult to go beyond 1-4 billion flips/s. 
Often happens in fiber optics where the 
available frequency range is much broader 
than what the electronics can fill

2. If we want multiple transmitter to be able to 
independently send signals on the same 
medium. Often used in wireless links where 
each transmitter/receiver pair can pick a 
frequency range and use it in any way that they 
like

frequency

si
gn

al
 s

tr
en

gt
h 

at
 th

at
 fr

eq
ue

nc
y



Basic idea of error detection
Adding redundant information to a frame that can be used to 
determine if errors have been introduced

Naïve approach: Transmitting two complete copies of data
• Identical ➔ No error
• Differ ➔ Error

Is this good enough? If not, why?
• n redundant bits for an n-bit message 
• Error can go undetected – possibility to corrupt the same bit positions in 

the first and second copies of the message
6

n-bit 

message

n-bit 

message

Sender Receiver

n-bit 

message

n-bit 

message



More efficient error detection methods

k redundant bits for n bits message, where k ≪ n

How to construct k-bit redundant information?
• Add no new information to the message
• Derived from the original message using some algorithm
• Both the sender and receiver know the algorithm

7

n-bit message (m)
k-bit code 

(r) 

Sender Receiver

n-bit message (m)
k-bit code 

(r) 

Receiver computes r using m

If they match, no error



Error detection – parity bits

• If I send some bits and they get corrupted on the way, say due to physical 
noise, what happens?

• We can add extra “error detection” bits to ensure that we at least find out that 
this has happened

• Simplest error detection mechanism is the parity check bit.

Rule: the final bit is the parity bit ensures that there are always an even number 
of 1s
Examples:
• 0000 → 0000 0
• 1011 → 1011 1
• 0100 → 0100 1

If one bit is flipped, we can detect it



Error detection - checksum

• How do we detect more bit errors?  One method is to view the 
transmitted bits as a sequence of k-bit integers

• To the message of size n = m * k, add another k bits such that the sum 
of all the k-bit integers in the message is 0

Example: 
k = 8
Message: [10, 237, 213]
(10 + 237 + 213) % 256 = 204
Now 204 + 52 = 256
Thus, we can append 52 to get the encoded message: [10, 237, 213, 52]



How good is checksum?
• It catches all single-bit errors and most multi-bit errors. 
• It cannot catch all 2-bit errors. E.g. if we flipped the least-significant 

bits of two 8-bit integer, the sum remains the same
• Better error detection mechanisms have been designed to detect 

specific types of errors that are common in practice
• The book describes CRC, which catch catch the following (not a part of 

this course)
• All single- and double-bit errors
• All odd-bit errors (and hence all triple-bit errors)
• Any burst error less than k-bits long
• Most other multi-bit errors

Error detection - checksum



Reliable transmission
Ok, we’ve detected an error. How what?
Chapter 2.5



Reliable transmission

Reliable transmission is needed to retransmit data in case of packet 
corruption or loss 

Reliable transmission occurs in several layers. We’ll focus on link-
layer reliability for now

12



Building blocks for reliable transmission

Acknowledgements 
• A small control frame that a protocol sends back to its peer saying that it 

has received the earlier frame

Timeout
• If the sender does not receive an acknowledgment after a reasonable 

amount of time, then it retransmits the original frame
• The action of waiting a reasonable amount of time is called a timeout

13



Stop and wait protocol

After transmitting one frame, the sender waits for an 
acknowledgement before transmitting the next frame

If the acknowledgement does not arrive after a certain period of 
time (“timeout”), the sender retransmits the original frame

14



Example

15

Ack arrives 

before timeout

Original frame is 

lost

Ack is lost Timeout fires 

too soon

Any issues?

Duplicate 

frames



1-bit sequence number
Use 1 bit sequence number (0 or 1) in a 
frame header

When the sender retransmits frame 0, 
the receiver can determine that it is 
seeing a second copy of frame 0

The receiver still acknowledges it, in 
case the first acknowledgement was 
lost

16



Limitation of the stop and wait protocol
The sender has only one outstanding frame on the link at a time

Consider a 1.5 Mbps link with a 45 ms RTT, a frame size of 1 KB 
• Maximum Sending rate: Bits per frame / Time per frame 
• 1024 x 8 / 0.045 / 1024= 178 Kbps
• Bandwidth x delay product: 69.1 Kb or approximately 8 KB

1/8th of the link capacity ➔ Link is underutilized!

To use the link fully, then sender should transmit up to eight frames 
before having to wait for an acknowledgement

17



Alternative: Sliding window protocol

18

Sender sends multiple 

outstanding packets

Q: How many 

outstanding packets 

should be there to 

fill the pipe?



Sender-side variables
Sender assigns a sequence number (SeqNum) to each frame
Sender maintains three variables:

• Sending Window Size (SWS)
• Upper bound on the number of outstanding (unacknowledged) frames that the sender 

can transmit
• Last Acknowledgement Received (LAR)

• Sequence number of the last acknowledgement received
• Last Frame Sent (LFS)

• Sequence number of the last frame sent

19

★Sender-side invariant: 

LFS – LAR ≤ SWS



Sender-side actions

When an acknowledgement arrives
• The sender moves LAR to right, thereby allowing the sender to transmit 

another frame

The sender associates a timer with each frame it transmits
• It retransmits the frame if the timer expires before the ACK is received

The sender must buffer up to SWS frames. Why?
• To retransmit them until they are acknowledged

20

LAR

SWS



Receiver-side variables
Receiving Window Size (RWS)

• Upper bound on the number of out-of-order frames that the 
receiver is willing to accept

Largest Acceptable Frame (LAF)
• Sequence number of the largest acceptable frame

Last Frame Received (LFR)
• Sequence number of the last frame received

21

★Receiver-side invariant:

LAF – LFR ≤ RWS



Receiver-side actions

When a frame with sequence number SeqNum arrives:

If SeqNum ≤ LFR or SeqNum > LAF
• Discard it (the frame is outside the receiver window)

If LFR < SeqNum ≤ LAF
• Accept it 
• Now the receiver needs to decide whether or not to send an ACK

22



When to send an ACK?

SeqNumToAck: the largest sequence number not yet 
acknowledged, such that all frames with sequence number less 
than or equal to SeqNumToAck have been received

The receiver acknowledges the receipt of SeqNumToAck even if 
high-numbered packets have been received

• It is called a cumulative ACK

The receiver then sets 
• LFR = SeqNumToAck 
• LAF = LFR + RWS 

23



Example scenario
Suppose LFR = 5 and RWS = 4 ➔LAF = 9

• i.e., the last ACK that the receiver sent was for SeqNo 5

If frames 7 and 8 arrive, they will be buffered because they are 
within the receiver window
But no ACK will be sent since frame 6 is yet to arrive

• Frames 7 and 8 are out of order

Now, frame 6 arrives (e.g., lost first time and retransmitted)
The receiver acknowledges frame 8 and sets LFR to 8 and LAF to 12 

24

4 5 6 7 8 9 10

LFR

RWS

LAFLFR

RWS



Issues with Sliding window protocol

When timeout occurs (i.e., packet loss), the amount of data in 
transit decreases

• The sender is unable to advance its window
• The longer it takes to notice that a packet loss has occurred, the more 

severe the problem becomes

How to improve this: Giving more (early) information to the sender!
• Negative Acknowledgement
• Additional Acknowledgement 
• Selective Acknowledgement

25



More informative ACKs
Negative Acknowledgement (NAK)

• Receiver sends NAK for frame 6 when frame 7 arrive (in the previous 
example)

Additional Acknowledgement
• Receiver sends additional ACK for frame 5 when frame 7 arrives
• Sender uses duplicate ACK (DupACK) as a clue for frame loss

Selective Acknowledgement
• Receiver will acknowledge frames 7 and 8
• Sender knows frame 6 is lost
• Sender can keep the pipe full (additional complexity)

26



Sequence numbers are finite

Sequence numbers are integers with a finite number of bits

We need to be careful when they “roll over” to zero. While 
important, the exact mechanism used is boring, so we will not 
discuss it in this course


	Slide 1: Lecture 9: Physical layer - Error detection and reliable transmission
	Slide 2: Recap: bit synchronization
	Slide 3: Recap: Signal bandwidth 
	Slide 4: Recap: Sending multiple signals on the same medium
	Slide 5: Recap: Sending multiple signals on the same medium
	Slide 6: Basic idea of error detection
	Slide 7: More efficient error detection methods
	Slide 8: Error detection – parity bits
	Slide 9: Error detection - checksum
	Slide 10: Error detection - checksum
	Slide 11: Reliable transmission
	Slide 12: Reliable transmission
	Slide 13: Building blocks for reliable transmission
	Slide 14: Stop and wait protocol
	Slide 15: Example
	Slide 16: 1-bit sequence number
	Slide 17: Limitation of the stop and wait protocol
	Slide 18: Alternative: Sliding window protocol
	Slide 19: Sender-side variables
	Slide 20: Sender-side actions
	Slide 21: Receiver-side variables
	Slide 22: Receiver-side actions
	Slide 23: When to send an ACK?
	Slide 24: Example scenario
	Slide 25: Issues with Sliding window protocol
	Slide 26: More informative ACKs
	Slide 27: Sequence numbers are finite

