
24

Competitive Caching with Machine Learned Advice

THODORIS LYKOURIS, Microsoft Research New York City

SERGEI VASSILVITSKII, Google Research New York City

Traditional online algorithms encapsulate decision making under uncertainty, and give ways to hedge against
all possible future events, while guaranteeing a nearly optimal solution, as compared to an offline optimum.
On the other hand, machine learning algorithms are in the business of extrapolating patterns found in the
data to predict the future, and usually come with strong guarantees on the expected generalization error.

In this work, we develop a framework for augmenting online algorithms with a machine learned predictor
to achieve competitive ratios that provably improve upon unconditional worst-case lower bounds when the
predictor has low error. Our approach treats the predictor as a complete black box and is not dependent on
its inner workings or the exact distribution of its errors.

We apply this framework to the traditional caching problem—creating an eviction strategy for a cache of
size k . We demonstrate that naively following the oracle’s recommendations may lead to very poor perfor-
mance, even when the average error is quite low. Instead, we show how to modify the Marker algorithm
to take into account the predictions and prove that this combined approach achieves a competitive ratio
that both (i) decreases as the predictor’s error decreases and (ii) is always capped by O (logk), which can be
achieved without any assistance from the predictor. We complement our results with an empirical evaluation
of our algorithm on real-world datasets and show that it performs well empirically even when using simple
off-the-shelf predictions.

CCS Concepts: • Theory of computation → Caching and paging algorithms; Adversary models;

Additional Key Words and Phrases: Online algorithms, machine learned predictions, paging, beyond worst-
case analysis

ACM Reference format:

Thodoris Lykouris and Sergei Vassilvitskii. 2021. Competitive Caching with Machine Learned Advice. J. ACM

68, 4, Article 24 (July 2021), 25 pages.
https://doi.org/10.1145/3447579

1 INTRODUCTION

Despite the success and prevalence of machine learned systems across many application domains,
there are still a lot of hurdles that one needs to overcome to deploy an ML system in practice [43].
As these systems are rarely perfect, a key challenge is dealing with errors that inevitably arise.

An extended abstract of this article appeared in the Proceedings of the 35th International Conference on Machine Learning

(ICML 2018) [31].
This article was initiated during the first author’s internship at Google NYC while he was a Ph.D. student at Cornell
University; the work was partly supported by NSF under award CCF-1563714 and by a Google Ph.D. Fellowship.
Authors’ addresses: T. Lykouris, Microsoft Research New York City; email: thlykour@microsoft.com; S. Vassilvitskii,
Google Research New York City; email: sergeiv@google.com.

$

This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0004-5411/2021/07-ART24
https://doi.org/10.1145/3447579

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Corrected Version of Record. V.1.1. Published August 21, 2021.

https://doi.org/10.1145/3447579
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3447579
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447579&domain=pdf&date_stamp=2021-07-14

24:2 T. Lykouris and S. Vassilvitskii

There are many reasons why learned systems may exhibit errors when deployed. First, most of
them are trained to be good on average, minimizing some expected loss. In doing so, the system may
invest its efforts in reducing the error on the majority of inputs, at the expense of increased error
on a handful of outliers. Another problem is that generalization error guarantees only apply when
the train and test examples are drawn from the same distribution. If this assumption is violated,
e.g., due to distribution drift or adversarial examples [46], the machine learned predictions may
be very far from the truth. In all cases, any system backed by machine learning needs to be robust
enough to handle occasional errors.

While machine learning is in the business of predicting the unknown, online algorithms provide
guidance on how to act without any knowledge of future inputs. These powerful methods show
how to hedge decisions so that, regardless of what the future holds, the online algorithm performs
nearly as well as the optimal offline algorithm. However these guarantees come at a cost: since
they protect against the worst case, online algorithms may be overly cautious, which translates to
high competitive ratios even for seemingly simple problems.

In this work, we ask:

What if the online algorithm is equipped with a machine learned predictor? How can one use

this predictor to combine the predictive power of machine learning with the robustness of online

algorithms?

We focus on a prototypical example of this area: the online paging, or caching problem. In this
setting, a series of requests arrives one at a time to a server equipped with a small amount of
memory. Upon processing a request, the server places the answer in the memory (in case an iden-
tical request comes in the future). Since the local memory has limited size, the server must decide
which of the current elements to evict. It is well known that if the local memory or cache has size
k , then any deterministic algorithm incurs competitive ratio Ω(k). However, an O (k) bound can
be also achieved by almost any reasonable strategy, thus this metric fails to distinguish between
algorithms that perform well in practice and those that perform poorly. The competitive ratio of
the best randomized algorithm is Θ(logk) which, despite its elegant analysis , is much higher than
what is observed on real inputs.

In contrast, we show how to use machine learned predictions to achieve a competitive ratio of
2 +O (min(

√
η/Opt, logk), when using a predictor—with total prediction error ofη, where Opt is the

value of the offline optimal solution see Section 3.2 for a precise statement of results . Thus, when
the predictions are accurate (small η), our approach circumvents the worst-case lower bounds. On
the other hand, even when the oracle is inaccurate (large η), the performance degrades gracefully
to almost match the worst-case bound.

1.1 Our Contribution

The conceptual contribution of this article lies in formalizing the interplay between machine learn-
ing and competitive analysis by introducing a general framework (Section 2), and a set of desiderata
for online algorithms that use machine learned predictions.

We look for approaches that:

• Make minimal assumptions on the machine learned predictor: Specifically, since most ma-
chine learning guarantees are on the expected performance, our results are parametric as a
function of the error of the predictor, η, and not the distribution of the error.

• Are robust: A better oracle (one with lower η) results in a smaller competitive ratio
• Are worst-case competitive: No matter the performance of the oracle on the particular in-

stance, the algorithm behaves comparably to the best online algorithm for the problem.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:3

We instantiate the general framework to the online caching problem, specifying the form of the
predictions and presenting an algorithm that uses these predictions effectively (Section 3.2). Along
the way, we show that algorithmic innovation is necessary: Simply following the recommendations
of the predictor may lead to poor performance, even when the average error is small (Section 3.1).
Instead, we adapt the Marker algorithm [22] to carefully incorporate the feedback of the predictor.
The resulting approach, which we call the Predictive Marker, has guarantees that capture the best
of both worlds: The algorithm performs better as the error of the predictor decreases, but performs
nearly as well as the best online algorithm in the worst case. Our analysis generalizes to multiple
loss functions (such as absolute loss and squared loss). This freedom in the loss function with
the black-box access to the oracle allows our results to be strengthened with future progress in
machine learning and reduces the task of designing better algorithms to the task of finding better
predictors.

Our approach enjoys many practically desired qualities as we discuss in Section 4 among other
extensions. Most notably among those qualities, our framework enables us to robustify commonly
used practical heuristics such as the Least Recently Used (LRU) algorithm. Despite their practical
performance, these heuristics have poor provable guarantees as they are prone to particular worst-
case instances. Expressing the guidance of LRU as a predictor in Predictive Marker, we retain its
practical performance while also arming it with strong worst-case guarantees (Section 4.2).

We complement our theoretical findings with empirical results (Section 5). We test the perfor-
mance of our algorithm on public data using off-the-shelf machine learning models. We compare
the performance to the LRU algorithm, which serves as the gold standard, the original Marker
algorithm, as well as directly using the predictor. In all cases, the Predictive Marker algorithm
outperforms known approaches.

Before moving to the technical content, we provide a simple example that highlights the main
concepts of this work.

1.2 Example: Faster Binary Search

Consider the classical binary search problem. Given a sorted array A on n elements and a query
element q, the goal is to either find the index of q in the array or state that it is not in the set.
The textbook method is binary search: compare the value of q to that of the middle element of A
and recurse on the correct half of the array. After O (logn) probes, the method either finds q or
returns.

Instead of applying binary search, one can train a classifier, h, to predict the position of q in the
array. (Although this may appear to be overly complex, Kraska et al. [28] empirically demonstrate
the advantages of such a method.) How to use such a classifier? A simple approach is to first probe
the location at h(q); if q is not found there, we immediately know whether it is smaller or larger.
Suppose q is larger than the element in A[h(q)] and the array is sorted in increasing order. We
probe elements at h(q) + 2,h(q) + 4,h(q) + 8, and so on, until we find an element larger than q (or
we hit the end of the array). Then we simply apply binary search on the interval that’s guaranteed
to contain q.

What is the cost of such an approach? Let t (q) be the true position of q in the array (or the
position of the largest element smaller thanq if it is not in the set). The absolute loss of the classifier
on q is then ϵq = |h(q) − t (q) |. On the other hand, the cost of running the above algorithm starting
at h(q) is at most 2(log |h(q) − t (q) |) = 2 log ϵq .

If the queries q come from a distribution, then the expected cost of the algorithm is:

2Eq

[
log (|h(q) − t (q) |)

]
≤ 2 logEq

[
|h(q) − t (q) |

]
= 2 logEq[ϵq],

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:4 T. Lykouris and S. Vassilvitskii

where the inequality follows by Jensen’s inequality. This gives a tradeoff between the performance
of the algorithm and the absolute loss of the predictor. Moreover, since ϵq is trivially bounded by
n, this shows that even relatively weak classifiers (those with average error of

√
n) can lead to an

improvement in asymptotic performance.

1.3 Related Work

Our work builds upon the foundational work on competitive analysis and online algorithms; for a
great introduction, see the book by Borodin and El-Yaniv [14]. Specifically, we look at the standard
caching problem, see, for example, [39]. While many variants of caching have been studied over
the years, our main starting point will be the Marker algorithm by Fiat et al. [22].

As we mentioned earlier, competitive analysis fails to distinguish between algorithms that per-
form well in practice, and those that perform well only in theory. Several fixes have been proposed
to address these concerns, ranging from resource augmentation, where the online algorithm has a
larger cache than the offline optimum [44], to models of real-world inputs that restrict the inputs
analyzed by the algorithm, for example, insisting on locality of reference [5], or the more general
Working Set model [19].

The idea of making assumptions on the nature of the input to prove better bounds is common
in the literature. The most popular of these is that the data arrive in a random order. This is a
critical assumption in the secretary problem, and, more generally, in other streaming algorithms;
see, for instance, the survey by McGregor [33]. While the assumption leads to algorithms with
useful insight into the structure of the problem, it rarely holds true and is often hard to verify.

Another common assumption on the structure of the input gives rise to Smoothed Analysis,
introduced in a pioneering work by Spielman and Teng [45], explaining the practical efficiency
of the Simplex method. This approach assumes that any worst-case instance is perturbed slightly
before being passed to the algorithm; the idea is that this perturbation may be due to measurement
error or some other noise inherent in the data. The goal then is to show that the worst-case inputs
are brittle and do not survive the addition of random noise. Since its introduction, this method
has been used to explain the unusual effectiveness of many practical algorithms such as ICP [11],
Lloyd’s method [10], and local search [20], in the face of exponential worst-case bounds.

The prior work that is closest in spirit to ours looks for algorithms that optimistically assume
that the input has a certain structure, but also have worst-case guarantees when that fails to be
the case. One such assumption is that the data are coming from a stochastic distribution and was
studied in the context of online matching [35] and bandit learning [16]; both of these works pro-
vide improved guarantees if the input is stochastic but retain the worst-case guarantees otherwise.
Subsequent work has provided a graceful decay in performance when the input is mostly stochas-
tic (analogous to our robustness property) both in the context online matching [21] and bandit
learning [30]. In a related note, Ailon et al. [4] consider “self-improving” algorithms that effec-
tively learn the input distribution, and adapt to be nearly optimal in that domain. Contrasting to
these works, our approach utilizes a different structure in the data: the fact that the sequence can
be predicted.

Our work is not the first to use predictions to enhance guarantees in online decision-making. The
ability to predict something about the input has also used been used in online learning by Rakhlin
and Sridharan [41] where losses of next round are predicted and the guarantees scale with how
erroneous these precitions are. Our focus is on competitive analysis approaches where requests
affect the state of the system; as a result, a single misprediction can have long-lasting effect on the
system. With respect to using predictions in competitive analysis, another approach was suggested
by Mahdian et al. [32], who assume the existence of an optimistic, highly competitive, algorithm,
and then provide a meta algorithm with a competitive ratio that interpolates between that of the

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:5

worst-case algorithm and that of the optimistic one. This work is most similar to our approach,
but it ignores two key challenges that we face: (i) identifying predictions that can lead to (near)
offline optimality, and (ii) developing algorithms that use these predictions effectively in a robust
way. The work of Mahdian et al. [32] starts directly from the point where such an “optimistic”
algorithm is available, and combines it with a “good in the worst-case” algorithm in a black-box
manner. This has similarities to the approaches we discuss in Section 4.3 and Remark 4.4, but does
not answer how to develop the optimistic algorithm. As we show in this article, developing such
algorithms may be non-trivial even when the predictions are relatively good.

In other words, we do not assume anything about the data, or the availability of good algo-
rithms that work in restricted settings. Rather, we use the predictor to implicitly classify instances
into “easy” and “hard” depending on their predictability. The “easy” instances are those on which
the latest machine learning technology, be it perceptrons, decision trees, SVMs, Deep Neural Net-
works, GANs, LSTMs, or whatever else may come in the future, has few errors. In these instances,
our goal is to take advantage of the predictions, and obtain low competitive ratios. (Importantly,
our approach is completely agnostic to the inner workings of the predictor and treats it as a black
box.) The “hard” instances, are those where the prediction quality is poor, and we have to rely
more on classical competitive analysis to obtain good results.

A previous line of work has also considered the benefit of enhancing online algorithms with
oracle advice (see [15] for a recent survey). This setting assumes access to an infallible oracle and
studies the amount of information that is needed to achieve desired competitive ratio guaran-
tees. Our work differs in two major regards. First, we do not assume that the oracle is perfect,
as that is rarely the case in machine learning scenarios. Second, we study the tradeoff between
oracle error and the competitive ratio, rather than focusing on the number of perfect predictions
necessary.

Another avenue of research close to our setting asks what happens if the algorithm cannot
view the whole input, but must rely on a sample of the input to make its choices. Introduced
in the seminal work of Cole and Roughgarden [18], this notion of Learning from Samples, can
be viewed as first designing a good prediction function, h, and then using it in the algorithms.
Indeed, some of the follow-up work [12, 38] proves tight bounds on precisely how many samples
are necessary to achieve good approximation guarantees. In contrast, we assume that the online
algorithm is given access to a machine learned predictor, but does not know any details of its inner
workings—we know neither the average performance of the predictor, nor the distribution of the
errors.

Very recently, two articles explored domains similar to ours. Medina and Vassilvitskii [34]
showed how to use a machine learned oracle to optimize revenue in repeated posted price auctions.
Their work has a mix of offline calculations and online predictions and focuses on the specific prob-
lem of revenue optimization. Kraska et al. [28] demonstrated empirically that introducing machine
learned components to classical algorithms (in their case, index lookups) can result in significant
speed and storage gains. Unlike this work, their results are experimental, and they do not provide
tradeoffs on the performance of their approach vis-à-vis the error of the machine learned predictor.

Finally, since the publication of the original article, learning-augmented algorithms has emerged
as a rich area. Subsequently to our work, researchers have studied how to incorporate machine
learned predictions in other settings such as ski rental [24, 40], scheduling [8, 29, 40], bin packing
[8], bloom filters [36, 47], queueing [37], streaming algorithms [25], weighted paging [27], and
page migration [26]. While many of these focus on improving competitive ratios, some of them
explore other performance metrics, such as space complexity [25, 36, 47]. With respect to the
unweighted caching problem, we consider, subsequent work has also provided refined guarantees
under our prediction model [42, 48] or alternate prediction models [9].

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:6 T. Lykouris and S. Vassilvitskii

2 ONLINE ALGORITHMS WITH MACHINE LEARNED ADVICE

In this section, we introduce a general framework for combining online algorithms with ma-
chine learning predictions, which we term Online with Machine Learned Adviceframe-

work(OMLA). Before introducing the framework, we review some basic notions from machine
learning and online algorithms.

2.1 Preliminaries

Machine Learning Basics. We are given a feature space X, describing the salient characteristics of
each item and a set of labels Y . An example is a pair (x ,y), where x ∈ X describes the specific
features of the example, and y ∈ Y gives the corresponding label. In the binary search example, x
can be thought as the query element q searched and y as its true position t (x).

A hypothesis is a mapping h : X → Y and can be probabilistic in which case the output on
x ∈ X is some probabilistically chosen y ∈ Y . In binary search, h(x) corresponds to the predicted
position of the query.

To measure the performance of a hypothesis, we first define a loss function � : Y ×Y → R≥0.
When the labels lie in a metric space, we define absolute loss �1 (y, ŷ) = |y − ŷ |, squared loss
�2 (y, ŷ) = (y − ŷ)2, and, more generally, classification loss �c (y, ŷ) = 1y�ŷ .

Competitive analysis. To obtain worst-case guarantees for an online algorithm (that must make
decisions as each element arrives), we compare its performance to that of an offline optimum
(that has the benefit of hindsight). Let σ be the input sequence of elements for a particular on-
line decision-making problem, costA (σ) be the cost incurred by an online algorithm A on this
input, and Opt(σ) be the cost incurred by the optimal offline algorithm. Then algorithm A has
competitive ratio cr if for all sequences σ ,

costA (σ) ≤ cr · Opt(σ).

If the algorithmA is randomized, then costA (σ) corresponds to the expected cost of the algorithm
in input σ where the expectation is taken over the randomness of the algorithm.

The Caching Problem. The caching (or online paging) problem considers a system with two levels
of memory: a slow memory of size m and a fast memory of size k . A caching algorithm is faced
with a sequence of requests for elements. If the requested element is in the fast memory, a cache

hit occurs and the algorithm can satisfy the request at no cost. If the requested element is not in
the fast memory, a cache miss occurs, the algorithm fetches the element from the slow memory,
and places it in the fast memory before satisfying the request. If the fast memory is full, then one
of the elements must be evicted. The eviction strategy forms the core of the problem. The goal is
to find an eviction policy that results in the fewest number of cache misses.

It is well known that the optimal offline algorithm at time t evicts the element from the cache
that will arrive the furthest in the future; this is typically referred to in the literature as Bélády’s
optimal replacement paging algorithm [13]. On the other hand, without the benefit of foresight,
any deterministic caching algorithm achieves a competitive ratio of Ω(k), and any randomized
caching algorithm achieves a competitive ratio of Ω(logk) [39].

2.2 OMLA Definition

To define our framework in generality, we consider a general problem setting associated with a
general prediction model and then explain how both can be instantiated in the context of caching.

In traditional online algorithms, there is an universe Z and elements zi ∈ Z arrive one at a
time for rounds i = 1, 2, The problem Π specifies the optimization problem at hand, along with
the required constraints and any necessary parameters. For example, in the problem of caching

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:7

studied in this article, Πcaching = Caching(n,k), is parametrized by the number of requests n and
the cache size k .

Augmenting Online Algorithms with Machine Learned Predictors. In our framework, we assume
that the requested elements are augmented with a feature space X (discussed below). We refer to
the resulting feature-augmented elements as items and denote the item of the ith request by σi .
An input σ ∈ Π corresponds to a sequence of items: σ = (σ1,σ2, . . .). For the problem of caching
Πcaching = Caching(n,k), the item sequence σ has length n.

Each item is associated with a particular element by z (σi) ∈ Z as well as a featurex (σi) ∈ X. The
features capture any information that may be available to the machine learning algorithm to help
provide meaningful predictions. In caching, these may include information about the sequence
prior to the request, time patterns associated to the particular request, or any other information.
We note that even for caching, items are more general than their associated element: two items
with the same element are not necessarily the same, as their corresponding features may differ.

Prediction Model. The prediction model H prescribes a label space Y ; the ith item has label
y (σi) ∈ Y . This label space can be viewed as the information needed to solve the task (approxi-
mately) optimally. As we discuss in the end of Section 2.2, deciding on a particular label space is
far from trivial and it often involves tradeoffs between learnability and accuracy.

Given a prediction model H determining a label space Y , a machine learned predictor h ∈ H
maps features x ∈ X to predicted labels h(x) ∈ Y . In particular, for item σi , the predictor h returns
a predicted label h(x (σi)). To ease notation, we denote this by h(σi). Here we assume that this
mapping from features to labels is deterministic; our results extend to randomized mappings by
applications of Jensen’s inequality (see Section 3.5).

Loss Functions and Error of Predictors. To evaluate the performance of a predictor on a particu-
lar input, we consider a loss function �. Similar to the prediction model, selecting a loss function
involves tradeoffs between the learnability of the predictor and the resulting performance guaran-
tees; we elaborate on these tradeoffs in the end of Section 2.2. For a given loss function �, problem
Π, and prediction model H , the performance of the predictor h ∈ H on input σ ∈ Π is evaluated
by its error η� (h,σ). In full generality, this error can depend on the whole input in complicated
ways.

For the caching problem, the prediction model we consider predicts the subsequent time that a
requested element will get requested again. In this case, a natural loss function such as absolute or
squared loss decomposes the error across items. In later sections, we focus on such loss functions
throughout this article and therefore can express the error as:

η� (h,σ) =
∑

i

�(y (σi),h(σi)).

Instantiated with the absolute loss function, the error of the predictor is η�1 (h,σ) =
∑

i |y (σi) −
h(σi) |. We will use η1 (h,σ) as a shorthand for this absolute loss.

We note that this decomposition across items may not be possible. For example, edit distance
does not decompose across items but needs to be evaluated with respect to the whole instance.
The general framework we define extends to such non-decomposable loss functions but the above
restriction lets us better describe our results and draws more direct connection with classical ma-
chine learning notions.

We now summarize the general concepts of our framework in the following definition:

Definition 1. The Online with Machine Learned Advice (OMLA) framework is defined with re-
spect to (a) a problem Π, (b) a prediction modelH determining a feature spaceX and a label space
Y , and (c) a loss function �. An instance consists of:

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:8 T. Lykouris and S. Vassilvitskii

• An input σ∈ Π consisting of items σi arriving online, each with features x (σi) ∈ X and label
y (σi) ∈ Y ;

• A predictor h : X → Y that predicts a label h(σi) for each x (σi) ∈ X;
• The error of predictor h at sequence σ w.r.t. loss �, η� (h,σ).

Our goal is to create online algorithms that, when augmented with a predictor h, can use its
advice to achieve an improved competitive ratio. To evaluate how well an algorithm A performs
with respect to this task, we extend the definition of competitive ratio to be a function of the
predictor’s error. We first define the set of predictors that are sufficiently accurate.

Definition 2. For a fixed optimization problem Π, let OptΠ (σ) denote the value of the optimal
solution on the input σ . Consider a prediction model H . A predictor h∈ H is ϵ-accurate with
respect to a loss function � for Π if for any σ∈ Π:

η�,H ,Π (h,σ) ≤ ϵ · OptΠ (σ).

We will useH�,H ,Π (ϵ) to denote the class of ϵ-accurate predictors.

At first glance, it may appear unnatural to tie the error of the prediction to the value of the
optimal solution. However, our goal is to have a definition that is invariant to simple padding ar-
guments. For instance, consider a sequence σ ′ = σσ , which concatenates two copies of an input
σ .1 It is clear that the prediction error of any predictor doubles, but this is not due to the pre-
dictor suddenly being worse. One could instead normalize the prediction error by the length of
the sequence, but in many problems, including caching, one can artificially increase the length of
the sequence without impacting the value of the optimum solution, or the impact of predictions.
Normalizing by the value of the optimum addresses both of these problems.

Call an algorithm A ϵ-assisted if it has access to an ϵ-accurate predictor. The competitive ratio
of an ϵ-assisted algorithm is itself a function of ϵ and may also depend on parameters specified by
Π such as the cache size k or the number of elements n.

Definition 3. For a fixed optimization problem Π and a prediction model H , let
inputCRA,H ,Π (h,σ) be the competitive ratio of algorithm A that uses a predictor h∈ H when
applied on an input σ ∈ Π. The competitive ratio of an ϵ-assisted algorithmA for problem Π with
respect to loss function � and prediction modelH is:

crA, �,H ,Π (ϵ) = max
σ ∈Π,h∈H�,H ,Π (ϵ)

inputCRA,H ,Π (h,σ)

We now define the desiderata that we wish our algorithm to satisfy. We would like our algorithm
to perform as well as the offline optimum when the predictor is perfect, degrade gracefully with
the error of the predictor, and perform as well as the best online algorithm regardless of the error
of the predictor. We define these properties formally for the performance of an algorithm A a
particular loss function �, prediction modelH , and problem Π.

Definition 4. A is β-consistent if crA, �,H ,Π (0) = β .

Definition 5. A is α-robust for a function α (·), if crA, �,H ,Π (ϵ) = O (α (ϵ)).

Definition 6. A is γ -competitive if crA, �,H ,Π (ϵ) ≤ γ for all values of ϵ .

Our goal is to find algorithms that simultaneously optimize the aforementioned three properties.
First, they are ideally 1-consistent: recovering the optimal solution when the predictor is perfect.

1In order for both instances to be equally sized and therefore be inputs of the same problem Π, we can think of padding
the end of the first instance with the same dummy request.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:9

This is not necessarily feasible for multiple reasons. From a computational side, the underlying
problem may be NP-hard. Moreover, achieving any notion of robustness may inevitably be at odds
with exact consistency. As a result, we are satisfied with β-consistency for some small constant
β . Second, they are α (·)-robust for a slow growing function α : seamlessly handling errors in the
predictor. This function depends on the exact prediction model and the way that the loss is defined
with respect to it. As discussed below, different prediction models and loss functions may well lead
to different robustness guarantees while also achieve different levels of learnability. Finally, they
are worst-case competitive: they perform as well as the best online algorithms even when the
predictor’s error is high. As hinted before, all competitive ratios can be functions of the problem
dimensions inherent in Π; for example, in caching, the worst-case performance γ needs to depend
on the cache size k . Ideally, the consistency and robustness quantities β and α (ϵ) (for small ϵ > 0)
do not display such dependence on these problem dimensions.

Discussion on the OMLA Framework. For the caching problems predictions and loss functions as
decomposable per element, but one can also define predictions with respect to different parts of
the instance. For example, subsequent works used strong lookahead for weighted paging [27] and
learned weights for scheduling [29]—both of these prediction models are not per-element. Simi-
larly, loss functions can be computed with respect to the complete instance. Per-item predictions,
however, have a stronger connection to classical machine learning terminology.

Next, thus far, we have disregarded the question of where the predictor comes from and how
learnable it is. This is an important question and has been elegantly discussed in multiple contexts
such as revenue maximization [18]. In general, the decision on both the prediction modelH and the
loss function � needs to take into account the learnability question and have a better understanding
of the exact tradeoffs is a major open direction of our work. Subsequent work sheds further light
on the learnability question in the context of our framework [6].

Finally, although we define our framework with respect to competitive analysis, predictions
can be useful to augment online algorithm design with respect to other metrics such as space
complexity [25, 36, 47] and our framework can be easily extended to capture such performance
gains.

2.3 Caching with ML Advice

In order to instantiate the framework to the caching problem, we need to specify the items of
the input sequence σ , the prediction modelH (and thereby the label space Y), as well as the loss
function �. Each item corresponds to one request σi ; the latter is associated with an element z (σi) ∈
Z and features x (σi) ∈ X that encapsulate any information available to the machine learning
algorithm. The element space Z consists of the m elements of the caching problem defined in
Section 2.1. The exact choice of the feature space X is orthogonal to our setting, though of course
richer features typically lead to smaller errors. The input sequenceσ = (σ1,σ2, . . .) of the requested
items is assumed to be fixed in advance and is oblivious to the realized randomness of the algorithm
but unknown to the algorithm.

The main design choice of the prediction model is the question of what to predict which is cap-
tured in our framework by the choice of the label space. For caching problems, a natural candidate
is predicting the next time a particular element is going to appear. It is well known [13] that when
such predictions are perfect, the online algorithm can recover the best offline optimum. Formally,
the label space Y we consider is a set of positions in the sequence, Y = N+. Given a sequence σ ,
the label of the ith element is y (σi) = mint>i {t : x (σt) = x (σi)}. If the element is never seen again,
we set y (σi) = n + 1. Note that y (σi) is completely determined by the sequence σ . We use h(σi) to
denote the outcome of the prediction on an element with features x (σi). Note that the feature is

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:10 T. Lykouris and S. Vassilvitskii

not only a function of the element identity z (σi); when an element reappears, its features may be
drastically different.

In what follows, we fix the problem Π = Caching(n,k) to a caching problem with n requests
and cache size k and the prediction model H to be about the next appearance of a requested
element. We consider a variety of loss functions (discussed in detail in Section 3.3) that capture, for
example, absolute and squared loss functions. To ease notation, we therefore drop any notational
dependence on the prediction model H and the problem Π as both are fixed throughout the rest
of the article, but keep the dependence on the loss function �.

3 MAIN RESULT: PREDICTIVE MARKER

In this section, we describe the main result: an algorithm that satisfies the three desiderata of the
previous section. Before describing our algorithm, we show that combining the predictions with
ideas from competitive analysis is to a large extent essential; blindly evicting the element that is
predicted the furthest in the future by the predictor (or simple modifications of this idea) can result
in poor performance both with respect to robustness and competitiveness.

3.1 Blindly Following the Predictor Is Not Sufficient

Evicting Element Predicted the Furthest in the Future. An immediate way to use the predictor is to
treat its output as truth and optimize based on the whole predicted sequence. This corresponds
to the Bélády rule that evicts the element predicted to appear the furthest in the future. We refer
to this algorithm as algorithm B (as it follows the Bélády rule). Since this rule achieves offline
optimality, this approach is consistent, i.e., if the predictor is perfect, this algorithm is ex-post
optimal. Unfortunately, this approach does not have similarly nice performance with respect to
the other two desiderata. With respect to robustness, the degradation with the average error of the
predictor is far from the best possible, while a completely unreliable predictor leads to unbounded
competitive ratios, far from the ones of the best online algorithm.

Proposition 3.1. Consider the caching problem Π with n requests and cache size k , the prediction

model H that predicts the next arrival of a requested element and the absolute loss function �1. The

competitive ratio of ϵ-assisted algorithm B is crB, �1 (ϵ) = Ω(ϵ).

The implication is that when the error of the predictor is much worse than the offline optimum,
the competitive ratio becomes unbounded. With respect to robustness, the rate of decay is far from
optimal, as we will see in Section 3.3.

Proof of Proposition 3.1. We will show that, for every ϵ , there exist a sequenceσ and a predic-
tor h such that the absolute error η1 (h,σ) ≤ ϵ · Opt while the competitive ratio of algorithm B is
ϵ−1

2 . For ease of presentation, assume that ϵ > 3. Consider a cache of size k = 2 and three elements
a,b, c; the initial configuration of cache is a, c . The sequence consists of repetitions of the follow-
ing sequence with ϵ requests per repetition. The actual sequence is a bcbc . . .bc︸������︷︷������︸

ϵ−1

a bcbc . . .bc︸������︷︷������︸
ϵ−1

. . . (a

appears once and then bc appears (ϵ − 1)/2 times).
In any repetition, the predictor accurately predicts the arrival time of all elements apart from

two: (i) when element a arrives, it predicts that it will arrive again two steps after the current time
(instead of in the first step of the next repetition) and (ii) when b arrives for the last time in one
repetition, it predicts it to arrive again in the fourth position of the next repetition (instead of the
second). As a result, the absolute error of the predictor is ϵ (ϵ − 2 error in the a-misprediction and
2 error in the b-misprediction). The optimal solution has two evictions per repetition (one to bring
a in the cache and one to directly evict it afterwards). Instead, the algorithm never evicts a as it

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:11

is predicted to arrive much earlier than all other elements, and therefore has ϵ − 1 cache misses.
This means that the competitive ratio of this algorithm is Ω(η1 (h,σ)/Opt(σ)) which completes
the proof. �

Evicting Elements with Proven Wrong Predictions. The problem in the above algorithm is that
algorithm B keeps too much faith in predictions that have been already proven to be wrong (as
the corresponding elements are predicted to arrive in the past). It is tempting to “fix” the issue
by evicting any element whose predicted time has passed, and evict again the element predicted
the furthest in the future if no such element exists. We call this algorithmW as it takes care of
wrong predictions. Formally, let h(j, t) denote the last prediction about zj at or prior to time t .
At time t algorithm W evicts an arbitrary element from the set St = {j : h(j, t) < t } if St � ∅
and arg maxzi ∈Cache(t) h(i, t) otherwise. We show that algorithmW has similarly bad performance
guarantees.

Proposition 3.2. Consider the caching problem Π with n requests and cache size k , the prediction

model H that predicts the next arrival of a requested element and the absolute loss function �1. The

competitive ratio of ϵ-assisted algorithmW is crW, �1 (ϵ) = Ω(ϵ).

Proof. Consider a cache of size k = 3 and four elements a,b, c,d ; the initial configuration of
cache is a,b, c and then d arrives. The actual sequence consists of repetitions of the following
sequence with (ϵ/2) + 1 requests per repetition (for ease of presentation, assume that ϵ > 6). The
actual sequence σ is d abcabc . . . abc︸�����������︷︷�����������︸

ϵ/2

d abcabc . . . abc︸�����������︷︷�����������︸
ϵ/2

. . ..

In any repetition, the predictor h accurately predicts the arrival time of element d but always
makes mistake in elements a,b, c by predicting them to arrive two time steps earlier. As a result,
the absolute error of the predictor is ϵ (error of 2 for any of the appearances of a,b, c). The optimal
solution has two evictions per repetition (one to bring element d and one to evict it afterwards).
Instead the algorithm always evicts elements a,b, c because they are predicted earlier than their
actual arrival and are therefore evicted as “wrong” predictions. This means that the competitive
ratio of this algorithm is also Ω(η1 (h,σ)/Opt(σ)) which completes the proof. �

The latter issue can be again fixed by further modifications of the algorithm but these simple
examples demonstrate that, unless taken into account, mispredictions can cause significant ineffi-
ciency in the performance of the algorithms.

Beyond Blindly Trusting the Predictor. The common problem in both examples is that there is
an element that should be removed but the algorithm is tricked into keeping it in the cache. To
deal with this in practice, most popular heuristics such as LRU (Least Recently Used) and FIFO

(First In First Out) avoid evicting recent elements when some elements have been dormant for
a long time. This tends to utilize nice locality properties leading to strong empirical performance
(especially for LRU). However, such heuristics impose a strict eviction policy which leads to weak
performance guarantees. Moreover, incorporating additional information provided by the predic-
tor becomes complicated.

Competitive analysis has also built on the idea of evicting dormant elements via developing
algorithms with stronger theoretical guarantees such as Marker. In the next section, we show how
we can incorporate predictions in the Marker algorithm to enhance its performance when the
predictions are good while retaining the worst-case guarantees. Interestingly, via our framework,
we can provide improved guarantees for the aforementioned heuristics such as LRU, improving
their worst-case guarantees while retaining their practical performance (see Section 4.2).

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:12 T. Lykouris and S. Vassilvitskii

3.2 Predictive Marker Algorithm

We now present our main technical contribution, a prediction-based adaptation of the Marker
algorithm [22]. This ϵ-assisted algorithm gets a competitive ratio of 2 ·min(1 +

√
5ϵ, 2Hk) where

Hk = 1 + 1/2 + · · · + 1/k denotes the k-th Harmonic number.

Classic Marker algorithm. We begin by recalling the Marker algorithm and the analysis of its
performance. The algorithm runs in phases. At the beginning of each phase, all elements are un-
marked. When an element arrives and is already in the cache, the element is marked. If it is not in
the cache, a random unmarked element is evicted, the newly arrived element is placed in the cache
and is marked. Once all elements are marked and a new cache miss occurs, the phase ends and we
unmark all of the elements.

For the purposes of analysis, an element is called clean in phase r if it appears during phase r ,
but does not appear during phase r − 1. In contrast, elements that also appeared in the previous
phase are called stale. The marker algorithm has a competitive ratio of 2Hk − 1 and the analysis is
tight [3]. We use a slightly simpler analysis that achieves competitive ratio of 2Hk below.

The crux of the upper bound lies in two claims. The first relates the performance of the optimal
offline algorithm to the total number of clean elements Q across all phases.

Claim 1 ([22]). Let Q be the number of clean elements. Then the optimal algorithm suffers at least
Q/2 cache misses.

The second comes from bounding the performance of the algorithm as a function of the number
of clean elements.

Claim 2 ([22]). Let Q be the number of clean elements. Then the expected number of cache misses

of the marker algorithm is Q · Hk .

Predictive Marker. The algorithm of [22] is part of a larger family of marking algorithms; infor-
mally, these algorithms never evict marked elements when there are unmarked elements present.
Any algorithm in this family has a worst-case competitive ratio of k . Therefore, pairing predictions
with a marking algorithm would avoid the pathological examples we saw previously.

A natural approach is to use predictions for tie-breaking, specifically evicting the element whose
predicted next appearance time is furthest in the future. When the predictor is perfect (and has
zero error), the stale elements never result in cache misses, and therefore, by Claim 1, the algorithm
has a competitive ratio of 2. On the other hand, by using the Marker algorithm and not blindly
trusting the oracle, we can guarantee a worst-case competitive ratio of k .

We extend this direction to further reduce the worst-case competitive ratio toO (Hk). To achieve
this, we combine the prediction-based tie-breaking rule with the random tie-breaking rule. Sup-
pose an element e is evicted during the phase. We construct a blame graph to understand the
reason why e is evicted; this may happen for two distinct reasons. First, e may have been evicted
when a clean element c arrived; in this case, we create a new node c which can be thought as the
start of a distinct chain of nodes. Alternatively, it may have been evicted because a stale element
s arrived (s was previously evicted in the same phase); in this case, we add a directed edge from e
to s . Note that the graph is always a set of chains (paths). The total length of the chains represents
the total number of evictions incurred by the algorithm during the phase, whereas the number of
distinct chains represents the number of clean elements. We call the lead element in every chain
representative and denote it by ω (r , c), where r is the index of the phase and c the index of the
chain in the phase.

Our modification is simple—when a stale element arrives, it evicts a new element in a prediction-
based manner if the chain containing it has length less than Hk . Otherwise, it evicts a random un-
marked element. Looking ahead to the analysis, this switch to uniform evictions results in at most

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:13

Hk additional elements added to any chain during the course of the phase. This guarantees that the
competitive ratio is at most O (Hk) in expectation; we make the argument formal in Theorem 3.3.

The key to the analysis is the fact that the chains are disjoint, thus the interactions between
evictions can be decomposed cleanly. We give a formal description of the algorithm in Algorithm 1.
For simplicity, we drop dependence on σ from the notation.

ALGORITHM 1: Predictive Marker

Require: Cache C of size k initially empty (C ← ∅).
1: Initialize phase counter r ← 1, unmark all elements (M ← ∅), and set round i ← 1.
2: Initialize clean element counter qr ← 0 and tracking set S ← ∅.
3: Element zi arrives, and the predictor gives a prediction hi . Save prediction p (zi) ← hi .
4: if zi results in cache hit or the cache is not full (zi ∈ C or |C| < k) then

5: Add to cache C ← C ∪ {zi } without evicting any element and go to Step 26
6: end if

7: if the cache is full and all cache elements are marked (|M| = k) then

8: Increase phase (r ← r + 1), initialize clean counter (qr ← 0), save current cache(C → S) as
the set of elements that are possibly stale in the new phase, and unmark elements (M ← ∅).

9: end if

10: if zi is a clean element (zi � S) then

11: Increase number of clean elements: qr ← qr + 1.
12: Initialize size of new clean chain: n(r ,qr) ← 1.
13: Select to evict unmarked element with highest predicted time: e = arдmaxz∈C−Mp (z).
14: end if

15: if zi is a stale element (zi ∈ S) then

16: It is the representative of some clean chain. Let c be this clean chain: zi = ω (r , c).
17: Increase length of the clean chain n(r , c) ← n(r , c) + 1.
18: if n(r , c) ≤ Hk then

19: Select to evict unmarked element with highest predicted time: e = arдmaxz∈C−Mp (z).
20: else

21: Select to evict a random unmarked element e ∈ C −M.
22: end if

23: Update cache by evicting e: C ← C ∪ {zi } − {e}.
24: Set e as representative for the chain: ω (r , c) ← e .
25: end if

26: Mark incoming element (M ←M ∪ {zi }), increase round (i ← i + 1), and go to Step 3.

3.3 Analysis

In order to analyze the performance of the proposed algorithm, we begin with a technical definition
that captures how slowly a loss function � can grow.

Definition 7. LetAT be the set of all the sequencesAT = a1,a2, . . . ,aT , of increasing integers of
lengthT , that is a1 < a2 < · · · < aT , and BT be the set of all sequences BT = b1,b2, . . . ,bT of non-
increasing reals of length T , b1 ≥ b2 ≥ · · · ≥ bT . For a fixed loss function �, we define its spread

S� : N+ → R+ as:

S� (m) = min{T : ∀AT ∈ AT ,BT ∈ BT :�(AT ,BT) ≥ m}

The spread captures the length of a subsequence that can be predicted in completely reverse
order as a function of the error of the predictor with respect to loss function �. We note that the

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:14 T. Lykouris and S. Vassilvitskii

sequence BT is assumed to be over reals instead of integers as it corresponds to the outcome of
the machine learned predictor and we do not want to unnecessarily restrict the output of this
predictor.

The following lemma instantiates the spread for loss metrics we consider and is proved in the
Appendix A.

Lemma 3.1. For absolute loss, �1 (A,B) =
∑

i |ai − bi |, the spread of �1 is S�1 (m) ≤
√

5m.

For squared loss, �2 (A,B) =
∑

i (ai − bi)2, the spread of �2 is S�2 (m) ≤ 3
√

14m.

We now prove the main theorem of the paper.

Theorem 3.3. Consider the caching problem Π with n requests and cache size k , the prediction

model H that predicts the next arrival of a requested element and any loss function � with spread

bounded by S� for some function S� that is concave in its argument. Then, the competitive ratio of

ϵ-assisted Predictive Marker PM is bounded by:

crPM, � (ϵ) ≤ 2 ·min (1 + 2S� (ϵ) , 2Hk).

To prove this theorem, we first introduce an analogue of Claim 2, which decomposes the total
cost into that incurred by each of the chains individually.

To aid in our analysis, we consider the following marking algorithm, which we call SM (Special

Marking). Initially, we simply evict an arbitrary unmarked element. At some point, the adversary
designates an arbitrary element not in the cache as special. For the rest of the phase, upon a cache
miss, if the arriving element is special, the algorithm evicts a random unmarked element and des-
ignates the evicted element as special. If the arriving element is not special, the algorithm proceeds
as before, evicting an arbitrary unmarked element.

Lemma 3.2. Using algorithm SM, in expectation at most Hk special elements cause cache misses

per phase.

Proof. Since we use a marking algorithm, the set of elements that are in the cache at the end of
each phase is determined by the element sequence (z1, z2, . . .) and is independent of the particular
eviction rule among unmarked elements. Fix a phase that begins at time τ . Let E be the set of k
distinct elements that arrive in this phase. Note that the arrival of the k + 1st distinct elements
starts a new phase.

Consider the time τ� that an element is designated special and assume that, at this time, there
are i� special elements. At this point, we define A ⊆ E to be the subset of the initial elements that
are unmarked and in the cache; we refer to this set as the candidate special set as they are the only
ones that can subsequently get designated as special; the set’s initial cardinality is i�. This set is
shrinking over time as elements are getting marked or evicted from the cache. Order the elements
by the time of their first requst in this phase.

We now bound the probability of the event Ei that an element becomes special when it is the
ith last element in A (based on the ordering by first arrival). By principle of deferred decisions, we
consider the first time that, upon request of a special element, it evicts one of the last i elements
in the active set. If this never happens, then the event Ei never occurs. Otherwise, observe that
we select the element to evict uniformly at random, and there exists at least one element in the
cache that never appears before the end of the phase. Second, if at any point an element j among
the i − 1 elements in the active set becomes special, the i-th element can no longer become special
as, at the time that j is requested, i is already marked. The above imply that the probability of the
event Ei is at most:

Pr [Ei] ≤
1

i + 1
. (1)

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:15

Therefore, given Equation (1), we can bound the expected number of misses caused by special
elements as:

1 +
k−1∑
i=1

1

i + 1
= Hk ,

where the first term is due to the first special element and the second term is due to events E1

through Ek−1. �

We now provide the lemma that lies in the heart of our robustness property.

Lemma 3.3. For any loss metric �, any phase r , the expected length of any chain is at most 1 +
S� (ηr,c) where ηr,c is the cumulative error of the predictor on the elements in the chain and S� is the

spread of the loss metric.

Proof. The clean element that initiates the clean chain evicts one of the unmarked elements
upon arrival. Since it does so based on the Bélády rule, it evicts the element s1 that is predicted to
reappear the latest in the future. If the predictor is perfect, this element will never appear in this
phase. If, on the other hand, s1 comes back (is a stale element), let s2 be the element it evicts, which
is predicted to arrive the furthest among the current unmarked elements.

Suppose there are m such evictions: s1, s2, . . . , sm . The elements were predicted to arrive in re-
verse order of their evictions. This is because elements sj for j > i were unmarked and in the
cache when element si got evicted; therefore, si was predicted to arrive later. However, the actual
arrival order is the reverse. If ηr,c is the total error of these elements, setting the actual arriving
times as the sequence AT and the predicted ones as the sequence BT in the definition of spread
(Definition 7), it means thatm ≤ S� (ηr,c). �

Combining the above two lemmas, we can obtain a bound on the expected length of any chain.

Lemma 3.4. For any loss metric �, any phase r , the expected length of any chain is at most min(1 +
2S� (ηr,c), 2 logk) where ηr,c is the cumulative error of the predictor on the elements in the chain and

S� is the spread of the loss metric.

Proof. The proof follows from combining the two above lemmas. By Lemma 3.2, if the chain
switches to random evictions, it incurs another Hk cache misses in expectation after the switch
point (and its length increases by the same amount), capping in expectation the total length by
2Hk ≤ 2 logk . If the chain does not switch to random evictions, it has Bélády evictions and, by
Lemma 3.3, it incurs at most S� (ηr,c) misses from stale elements. To ensure that the 2 logk term
dominates the bound when S� (ηr,c) ≥ logk , we multiply S� (ηr,c) by a factor of 2 in the first
term. �

Proof of Theorem 3.3. Consider an inputσ ∈ Π determining the request sequence. LetQ be the
number of clean elements (and therefore also chains). Any cache miss corresponds to a particular
eviction in one clean chain; there are no cache misses not charged to a chain by construction. By
Lemma 3.4, we can bound the evictions from the clean chain c of the r th phase in expectation by
min(1 + 2 · S� (ηr,c), 2 logk). Since both S� and the minimum operator are concave functions, the
way to maximize the length of chains is to apportion the total error, η, equally across all of the
chains. Thus, for a given error η and numberQ of clean chains, the competitive ratio is maximized
when the error in each chain is ηr,c = η/Q each. The total number of stale elements is therefore
in expectation at most: Q ·min(2 · S� (η/Q), 2Hk). By Claim 1, it holds that Q/2 ≤ Opt(σ), implying
the result since Opt(σ) ≤ Q . �

We now specialize the results for the absolute and squared losses.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:16 T. Lykouris and S. Vassilvitskii

Corollary 1. The competitive ratio of ϵ-assisted Predictive Marker with respect to the absolute

loss metric �1 is bounded by crPM, �1 (ϵ) ≤ min(2 + 2 ·
√

5ϵ, 4Hk).

Corollary 2. The competitive ratio of ϵ-assisted Predictive Marker with respect to the absolute

loss metric �2 is bounded by crPM, �1 (ϵ) ≤ min(2 + 2 · 3
√

14ϵ, 4Hk).

3.4 Tightness of Analysis

Robustness Rate of Predictive Marker. We show that our analysis is tight: any marking algorithm
that uses the predictor in a deterministic way cannot achieve an improved guarantee with respect
to robustness.

Theorem 3.4. Any deterministic ϵ-assisted marking algorithm A, that only uses the predictor

in tie-breaking among unmarked elements in a deterministic fashion, has a competitive ratio of

crA, � (ϵ) = Ω(min(S� (ϵ),k)).

Proof. Consider a cache of size k with k + 1 elements and any ϵ such that S� (ϵ) < k . We will
construct an instance that exhibits the above lower bound. SinceA uses marking, we can decom-
pose its analysis into phases. Let σ be the request sequence, and assume that we do not have any
repetition of an element inside the phase; as a result, the ith element of phase r corresponds to
element σ(r−1)k+i .

Suppose the predictor is always accurate on elements 2 through k − S� (ϵ) + 1 in each phase.
For the last S� (ϵ) − 1 elements of phase r as well as the first element of the of the next phase, the

elements are predicted to come again at the beginning of the subsequent phase, at time t = rk + 1.
Since the algorithm is deterministic, we order the elements so that their evictions are in reverse
order of their arriving time. By the definition of spread, the error of the predictor in these elements
is exactly ϵ and the algorithm incurs a cache miss in each of them. On the other hand, the offline
optimum has only 1 miss per phase, which concludes the proof. �

On the Rate of Robustness in Caching. Theorem 3.4 establishes that the analysis of Predictive
Marker is tight with respect to the rate of robustness, and suggests that algorithms that use the
predictor in a deterministic manner may suffer from similar rates. However, a natural question
that comes up is whether a better rate can be achieved using the predictor in a randomized way.
We conjecture that a rate of log(1 +

√
ϵ) with respect to the absolute loss is possible, similar to the

exponential improvement randomized schemes obtain over the deterministic guarantees of k with
respect to worst-case competitiveness. In subsequent work, Rohatgi [42] made significant progress
towards identifying the correct rate by proving refined upper and lower bounds.

3.5 Randomized Predictors

We now remove the assumption that the predictor h is deterministic and extend the definition of
ϵ-accurate predictors (Definition 2) to hold in expectation. The randomness may either come in
how the inputs are generated or in the predictions of h.

Definition 8. For a fixed optimization problem Π, let OptΠ (σ) denote the value of the optimal
solution on input σ . Assume that the predictor is probabilistic and therefore the error of the pre-
dictor at σ is a random variable η� (h,σ). Taking expectation over the randomness of the predictor,
we say that a predictor h is ϵ-accurate in expectation for Π if:

E[η� (h,σ)] ≤ ϵ · OptΠ (σ).

Similarly an algorithm is ϵ-assisted if it has access to an ϵ-accurate predictor in expectation.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:17

Analogously to the previous part, we can show:

Theorem 3.5. Consider any loss function � with spread bounded by S� for some function S� that

is concave in its argument. Then, the competitive ratio of ϵ-assisted in expectation Predictive Marker

PM is bounded by:

crP M, � (ϵ) ≤ 2 ·min (1 + 2S� (ϵ) , 2Hk).

Proof. For ease of notation assume that the outcomes of the predictors are finite. For each of
these potential realizations, we can bound the performance of the algorithm by Theorem 3.3. The
proof then follows by applying an additional Jensen’s inequality on all the possible realizations
due to the concavity of the spread and the min operator. �

4 DISCUSSION AND EXTENSIONS

Thus far, we have shown how to use an ϵ-accurate predictor to get a caching algorithm with an
O (
√
ϵ) competitive ratio for the absolute loss metric. We now provide a deeper discussion of the

main results. In Section 4.1, we give a finer tradeoff of competitiveness and robustness. We then
discuss some traits that limit the impact of the errors of the predictors in Section 4.2. Subsequently,
we show that common heuristic approaches, such as LRU, can be expressed as predictors in our
framework. This allows us to combine their predictive power with robust guarantees when they
fail. Finally, in Section 4.3, we provide a black-box way to combine robust and competitive ap-
proaches.

4.1 Robustness vs Competitiveness Tradeoffs

One of the free parameters in Algorithm 1 is the length of the chain when the algorithm switches
from following the predictor to random evictions. If the switch occurs after chains grow to γHk in
length, this provides a trade-off between competitiveness and robustness.

Theorem 4.1. Suppose that, for γ > 0, the algorithm uses γHk as switching point (line 18 in Al-

gorithm 1); denote this algorithm by PM (γ). Let a loss function � with spread bounded by S� for

some function S� that is concave in its argument. Then, the competitive ratio of ϵ-assisted PM (γ) is

bounded by:

crPM (γ), � (ϵ) ≤ 2 ·min

(
1 +

1 + γ

γ
S� (ϵ) ,γHk ,k

)
.

Proof. The proof follows the proof of Theorem 3.3 but slightly changes the Lemma 3.2 to ac-
count for the new switching point. In particular, with respect to the second term, the expected
length of each clean chain is at most Hk after the switching point, and, at most γHk before the
switching point by construction.

With respect to the robustness term, the length of each clean chain before the switch is bounded
by the spread of the metric on this subsequence. Since the total length is in expectation at most
(1 + γ)/γ higher, we need to adjust the first term accordingly.

Finally, the length of its clean chain is at most k regardless of the tie-breaking since we are using
marking which provides the last term. �

Let us reflect on the above guarantee. When γ → 0, then the algorithm is more conservative
(switching to random evictions earlier); this reduces the worst-case competitive ratio but at the
cost of abandoning the predictor unless it is extremely accurate. On the other hand, setting γ
very high makes the algorithm trust the predictor more, reducing the competitive ratio when the
predictor is accurate at the expense of a worst guarantee when the predictor is unreliable.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:18 T. Lykouris and S. Vassilvitskii

4.2 Practical Traits of Predictive Marker

Locality. The guarantee in Theorem 3.3 bounds the competitive ratio as a function of the quality
of the prediction. One potential concern is that if the predictions have of a small number of very
large errors, then the applicability of Predictive Marker may be quite limited.

Here we show that this is not the case. Due to the phase-based nature of the analysis, the algo-
rithm essentially “resets” at the end of every phase, and therefore the errors incurred in one phase
do not carry over to the next. Moreover, the competitive ratio in every phase is bounded byO (Hk).

Formally, for any sequence σ , we can define phases that consist of exactly k distinct elements.
Let cl(r ,σ) be the number of clean elements in phase r of sequence σ , and let η�,r (h,σ) denote
the error of predictor h restricted only to elements occurring in phase r .

Theorem 4.2. Consider a loss function � with spread S� . If S� is concave, the competitive ratio of

Predictive Marker PM at sequence σ when assisted by a predictor h is at most:

crPM, � ≤
∑

r cl(r ,σ) ·min
(
1 + 2S� (η�,r (h,σ)), 2Hk

)
∑

r cl(r ,σ)

Proof. The proof follows directly from Lemma 3.4 and applying Jensen’s inequality only within
the chains of the phase (instead of also across phases as we did in Theorem 3.3). �

This theorem illustrates a nice property of our algorithm. If the predictor h is really bad for a
period of time (i.e., its errors are localized), then the clean chains of the corresponding phases will
contribute to the second term (the logarithmic worst-case guarantee) but the other phases will
provide enhanced performance utilizing the predictor’s advice. In this way, the algorithm adapts
to the quality of the predictions, and bad errors do not propagate beyond the end of a phase. This
quality is very useful in caching where most patterns are generally well predicted but there may
be some unforeseen sequences.

Robustifying LRU. Another practical property of our algorithm is that it can seamlessly incorpo-
rate heuristics that are known to perform well in practice. In particular, the popular Least Recently
Used (LRU) algorithm can be expressed within the Predictive Marker framework. Consider the fol-
lowing predictor, h: when an element σi arrives at time i , the LRU predictor predicts next arrival
time h(σi) = −i .

Note that, by doing so, at any point of time, among the elements that are in the cache, the element
that is predicted the furthest in the future is exactly the one that has appeared the least recently.
Also note that any marked element needs to have arrived later than any unmarked element. As a
result, if we never switched to random evictions (or had k in the RHS of line 18 in Algorithm 1),
the Predictive Marker algorithm assisted with the LRU predictor is exactly the LRU algorithm.

The nice thing that comes from this observation is that we can robustify the analysis of LRU.
LRU, and its variants like LRU(2), tend to have very good empirical performance as using the
recency of requests is a good predictor about how future requests will arise. However, the worst-
case guarantee of LRU is unfortunately Θ(k) since it is a deterministic algorithm. By expressing
LRU as a predictor in the Predictive Marker framework and using a switching point of Hk for
each clean chain, we exploit most of this predictive power while also guaranteeing a logarithmic
worst-case bound on it.

4.3 Combining Robustness and Competitiveness in a Black-Box Manner

In the previous section, we showed how we can slightly modify a classical competitive algorithm
to ensure that it satisfies nice consistency and robustness properties when given access to a good
predictor, while retaining the worst-case competitiveness guarantees otherwise. In this part, we

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:19

show that, in fact, achieving the requirements individually is enough. In particular, we show a
black-box way to combine an algorithm that is robust and one that is worst-case competitive. This
reduction leads to a slightly worse bound, but shows that proving the robustness property (i.e.,
a graceful degradation with the error of the predictor) is theoretically sufficient to augment an
existing worst-case competitive algorithm.

Theorem 4.3. For the caching problem, let A be an α-robust algorithm and B a γ -competitive

algorithm. We can then create a black-box algorithm ALG that is both 9α-robust and 9γ -competitive.

Proof. We proceed by simulating A and B in parallel on the dataset, and maintaining the cache
state and the number of misses incurred by each. Our algorithm switches between following the
strategy ofA and the strategy of B. Let ct (A) and ct (B) denote the cost (number of misses) ofA and
B up to time t . Without loss of generality, let ALG begin by following strategy of A; it will do so
until a time t where ct (A) = 2 · ct (B). At this pointALG switches to following the eviction strategy
of B, doing so until the simulated cost of B is double that of A: a time t ′ with ct ′ (B) = 2 · ct ′ (A). At
this point, it switches back to following eviction strategy ofA, and so on. WhenALG switches from
A to B, the elements thatA has in cache may not be the same as those that B has in the cache. In this
case, it needs to reconcile the two. However, this can be done lazily (at the cost of an extra cache
miss for every element that needs to be reconciled). To prove the bound on the performance of
the algorithm, we next show that ct (ALG) ≤ 9 ·min(ct (A), ct (B)) for all t . We decompose the cost
incurred by ALG into that due to following the different algorithms, which we denote by ft (ALG),
and that due to reconciling caches, rt (ALG).

We prove a bound on the following cost ft by induction on the number of switches. Without
loss of generality, suppose that at time t , ALG switched from A to B, and at time t ′ it switches
from B back to A. By induction, suppose that ft (ALG) ≤ 3 min(ct (A), ct (B)) = 3ct (B), where the
equality follows since ALG switched from A to B at time t . In both cases, assume that caches are
instantly reconciled. Then:

ft ′ (ALG) = ft (ALG) + (ct ′ (B) − ct (B))

= ft (ALG) + 2ct ′ (A) − 1/2ct (A)

≤ 3ct (B) + 2(ct ′ (A) − ct (A)) + 3/2 · ct (A)

= 3ct (A) + 2(ct ′ (A) − ct (A))

≤ 3ct ′ (A)

= 3 min(ct ′ (A), ct ′ (B))

What is left is to bound the following cost for the time since the last switch. Let s denote the time
of the last switch and, assume without loss of generality that it was done fromA to B. Let s ′ denote
the last time step. By the previous set of inequalities (changing the second equation to inequality)
and the fact that the algorithm never switched back toA after s , it holds that fs ′ (ALG) ≤ 3cs ′ (A) ≤
6 min(cs ′ (A), cs ′ (B)).

To bound the reconciliation cost, assume the switch at time t is from A to B. We charge
the reconciliation of each element in B \A to the cache miss when the element was last
evicted by A. Therefore, the overall reconciliation cost is bounded by rt (ALG) ≤ ct (A) + ct (B)
≤ 3 min(ct (A), ct (B). �

Observe that the above construction can extend beyond caching and applies to any setting where
we can bound the cost that the algorithm needs to incur to reconcile the states of the robust and the
worst-case competitive algorithm. In particular, this occurs in the more general k-server problem.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:20 T. Lykouris and S. Vassilvitskii

Table 1. Number of Sequences; Sequence Length; Min and Max

Number of Elements for Each Dataset

Dataset Num Sequences Sequence Length Unique Elements
BK 100 2,101 67– 800

Citi 24 25,000 593 – 719

Remark 4.4. The above construction is similar to that of Fiat et al. [23] who showed how to
combine multiple competitive algorithms. In subsequent work, Antoniadis et al. [9] relied on a
similar construction to provide results for metrical task systems under a different prediction model.

5 EXPERIMENTS

In this section, we evaluate our approach on real-world datasets, empirically demonstrate its de-
pendence on the errors in the oracle, and compare it to standard baselines.

Datasets and Metrics. We consider two datasets taken from different domains to demonstrate the
wide applicability of our approach.

• BK is data extracted from BrightKite, a now defunct social network. We consider sequences
of checkins, and extract the top 100 users with the longest non-trivial checkin sequences—
those where the optimum policy would have at least 50 misses. This dataset is publicly
available at [1] and [17]. Each of the user sequences represents an instance of the caching
problem.

• Citi is data extracted from CitiBike, a popular bike-sharing platform operating in New
York City. We consider CitiBike trip histories, and extract stations corresponding to start-
ing points of each trip. We create 12 sequences, one for each month of 2017 for the New
York City dataset. We consider only the first 25,000 events in each file. This data is publicly
available at [2].

We give some additional statistics about each datasets in Table 1.
Our main metric for evaluation will be the competitive ratio of the algorithm, defined as the

number of misses incurred by the particular strategy divided by the optimum number of misses.

Predictions. We run experiments with both synthetic predictions to showcase the sensitivity of
our methods to learning errors, and with predictions using an of-the-shelf classifier, published
previously [7].

• Synthetic Predictions. For each element, we first compute the true next arrival time, y (t),
setting it to n + 1 if it does not appear in the future. To simulate the performance of an ML
system, we set h(t) = y (t) + ϵ , where ϵ is drawn i.i.d. from a lognormal distribution with
mean parameter 0 and standard deviation σ . We chose the lognormal distribution of errors
to showcase the effect of rare but large failures of the learning algorithm. Finally, observe
that, since we only compare the relative predicted times for each method, adding a bias term
to the predictor would not change the results.

• PLECO Predictions. In their work, Anderson et al. [7] developed a simple framework to model
repeat consumption, and published the parameters of their PLECO (Power Law with Expo-
nential Cut Off) model for the BrightKite dataset. While their work focused on predicting
the relative probabilities of each element (re)appearing in the subsequent time step, we mod-
ify it to predict the next time an element will appear. Specifically, we set h(t) = t + 1/p (t),
where p (t) represents the probability that element that appeared at time t will re-appear at
time t + 1.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:21

Fig. 1. Ratio of average number of evictions as compared to optimum for varying levels of oracle error.

Table 2. Competitive Ratio using PLECO Model

Algorithm Competitive Ratio on BK Competitive Ratio on Citi
Blind Oracle 2.049 2.023

LRU 1.280 1.859
Marker 1.310 1.869

Predictive Marker 1.266 1.810

Algorithms. We consider multiple algorithms for evaluation.

• LRU is the Least Recently Used policy that is wildly successful in practice.
• Marker is the classical Marker algorithm due to Fiat et al. [22].
• Predictive Marker is the algorithm we develop in this work. We set the switching cost to k ,

and therefore never switch to random evictions.
• Blind Oracle is the algorithm B described in Section 3.1, which evicts the element predicted

to appear furthest in the future.

5.1 Results

We set k = 10 and summarize the synthetic results on the BK dataset in Figure 1. Observe that
the performance of Predictive Marker is consistently better than LRU and standard Marker, and
degrades slowly as the average error increases, as captured by the theoretical analysis. Second,
we empirically verify that blindly following the oracle works well when the error is very low, but
quickly becomes incredibly costly.

The results using the PLECO predictor are shown in Table 2, where we keep k = 10 for the BK
dataset and set k = 100 for Citi; we note that the ranking of the methods is not sensitive to the
cache size, k . We can again see that the Predictive Marker algorithm outperforms all others, and
is 2.5% better than the next best method, LRU. While the gains appear modest, we note they are
statistically significant at p < 0.001. Moreover, the off-the-shelf PLECO model was not tuned or
optimized for predicting the next appearance of each element.

In that regard, the large difference in performance between using the predictor directly (Blind
Oracle) and using it in combination with Marker (Predictive Marker) speaks to the power of the
algorithmic method. By considering only the straightforward use of the predictor in the Blind
Oracle setting, one may deem the ML approach not powerful enough for this application; what
we show is that a more judicious use of the same model can result in tangible and statistically
significant gains.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

24:22 T. Lykouris and S. Vassilvitskii

6 CONCLUSION

In this work, we introduce the study of online algorithms with the aid of machine learned pre-
dictors. This combines the empirical success of machine learning with the rigorous guarantees of
online algorithms. We model the setting for the classical caching problem and give an oracle-based
algorithm whose competitive ratio is directly tied to the accuracy of the machine learned oracle.

Our work opens up two avenues for future work. On the theoretical side, it would be interesting
to see similar predictor-based algorithms for other online settings such as the k-server problem;
this has already led to a fruitful line of current research as we discussed in Section 1.3. On the prac-
tical side, our caching algorithm shows how we can use machine learning in a safe way, avoiding
problems caused by rare wildly inaccurate predictions. At the same time, our experimental results
show that even with simple predictors, our algorithm provides an improvement compared to LRU.
In essence, we have reduced the worst-case performance of the caching problem to that of find-
ing a good (on average) predictor. This opens up the door for practical algorithms that need not
be tailored towards the worst-case or specific distributional assumptions, but still yield provably
good performance.

APPENDIX

A PROOF OF LEMMA 3.1

In this section, we provide the proof of the lemma connecting spread to absolute and squared loss.
Before doing so, we provide a useful auxiliary lemma.

Lemma A.1. For odd T = 2n + 1, one pair (AT ,BT) minimizing either absolute or squared loss

subject to the constraints of the spread definition is A2n+1 = (0 . . . 2n) and BT = (n . . .n).

Proof. First, we show that there exists a BT minimizing the loss with bi = bj for all i, j. Assume
otherwise; then there exist two subsequent i, j withb ′i > b ′j . Since ai < aj + 1 by the assumption on
spread, minx ∈bi ,bj

{�(ai ,b) + �(aj ,b)} ≤ �(ai ,bi) + �(aj ,bj). Applying this recursively, we conclude
that such a BT exists.

Second, we show that there exist an AT that consists of elements ai+1 = ai + 1. Since the ele-
ments ofBT are all equal tob, the sequence

∑2n
i=0 �(ai ,b) is minimized for both absolute and squared

loss when ai = b + i − n.
Last, the exact value of b does not make a difference and therefore we can set it to be b = n

concluding the lemma. �

Lemma 3.1. restated: For absolute loss, �1 (A,B) =
∑

i |ai − bi |, the spread of �1 is S�1 (m) ≤
√

5m.

For squared loss, �2 (A,B) =
∑

(ai − bi)2, the spread of �2 is S�2 (m) ≤ 3
√

14m.

Proof. It will be easier to restrict ourselves to oddT = 2n + 1 and also assume thatT ≥ 3. This
will give an upper bound on the spread (which is tight up to small constant factors). By Lemma A.1,
a pair of sequence minimizing absolute/squared loss is AT = (0, . . . , 2n) and BT = (n, . . . ,n). We
now provide bounds on the spread based on this sequence, that is we find aT = 2n + 1 that satisfies
the inequality �(AT ,BT) ≤ m.

Absolute Loss. The absolute loss of the above sequence is:

�(AT ,BT) = 2 ·
n∑

j=1

j = 2 · n(n + 1)

2
= n(n + 1) =

T − 1

2
· T + 1

2
=
T 2 − 1

4
.

A T that makes �(AT ,BT) ≥ m is T =
√

4m + 1. Therefore, for absolute loss S� (m) ≤
√

5m, since
m ≥ 1.

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

Competitive Caching with Machine Learned Advice 24:23

Squared Loss. The squared loss of the above sequence is:

�(AT ,BT) = 2 ·
n∑

j=1

j2 = 2 · n(n + 1) (2n + 1)

6
=

(T 2 − 1) ·T
12

=
T 3 −T

12
≥ 8T 3

9 · 12
=

2T 3

27

where the inequality holds because T ≥ 3.
A T that makes �(AT ,BT) ≥ m is T = 3

√
14m. Therefore, for squared loss, S� (m) ≤ 3

√
14m. �

ACKNOWLEDGMENTS

The authors would like to thank Andrés Muñoz-Medina and Éva Tardos for valuable discussions
on the presentation of the article, Shuchi Chawla and Seffi Naor for useful feedback regarding
Section 3.4, Ola Svensson for suggesting the locality extension (Theorem 4.2) as well as an anony-
mous reviewer for pointing towards the direction of Theorem 4.3.

REFERENCES

[1] [n.d.]. Brightkite data. http://snap.stanford.edu/data/loc-brightkite.html.
[2] [n.d.]. Citibike System Data. http://https://www.citibikenyc.com/system-data.
[3] Dimitris Achlioptas, Marek Chrobak, and John Noga. 2000. Competitive analysis of randomized paging algorithms.

Theoret. Comput. Sci. 234, 1-2 (2000), 203–218. DOI:https://doi.org/10.1016/S0304-3975(98)00116-9
[4] Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer, and C. Seshadhri. 2011. Self-improving

algorithms. SIAM J. Comput. 40, 2 (2011), 350–375. DOI:https://doi.org/10.1137/090766437
[5] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. 2002. On paging with locality of reference. In Proceedings of the

T34th Annual ACM Symposium on Theory of Computing (STOC ’02). ACM, New York,, 258–267. DOI:https://doi.org/
10.1145/509907.509949

[6] Keerti Anand, Rong Ge, and Debmalya Panigrahi. 2020. Customizing ML predictions for online algorithms. In Pro-

ceedings of the 37th International Conference on Machine Learning (ICML).
[7] Ashton Anderson, Ravi Kumar, Andrew Tomkins, and Sergei Vassilvitskii. 2014. The dynamics of repeat consump-

tion. In Proceedings of the 23rd International Conference on World Wide Web (WWW ’14). ACM, New York,, 419–430.
DOI:https://doi.org/10.1145/2566486.2568018

[8] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc Renault. 2019. Online computation
with untrusted advice. arXiv preprint arXiv:1905.05655 (2019).

[9] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Simon Betrand. 2020. Online metric algorithms
with untrusted predictions. In Proceedings of the 37th International Conference on Machine Learning (ICML).

[10] David Arthur, Bodo Manthey, and Heiko Röglin. 2011. Smoothed analysis of the k-means method. J. ACM 58, 5 (2011),
19:1–19:31. DOI:https://doi.org/10.1145/2027216.2027217

[11] David Arthur and Sergei Vassilvitskii. 2006. Worst-case and smoothed analysis of the ICP algorithm, with an appli-
cation to the k-means method. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science

(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings. 153–164. DOI:https://doi.org/10.1109/FOCS.
2006.79

[12] Eric Balkanski, Aviad Rubinstein, and Yaron Singer. 2017. The limitations of optimization from samples. In Proceedings

of the Smposium on the Theory of Computing (STOC). http://arxiv.org/abs/1512.06238
[13] L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Syst. J. 5, 2 (June 1966),

78–101. DOI:https://doi.org/10.1147/sj.52.0078
[14] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive Analysis. Cambridge University Press,

New York, NY, USA.
[15] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen. 2016. Online algorithms

with advice: A survey. SIGACT News 47, 3 (Aug. 2016), 93–129. DOI:https://doi.org/10.1145/2993749.2993766
[16] Sébastien Bubeck and Aleksandrs Slivkins. 2012. The best of both worlds: Stochastic and adversarial bandits. In

COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland. 42.1–42.23. http:
//www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf.

[17] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: User movement in location-based
social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD ’11). ACM, New York, NY, USA, 1082–1090. DOI:https://doi.org/10.1145/2020408.2020579

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

http://snap.stanford.edu/data/loc-brightkite.html
http://https://www.citibikenyc.com/system-data
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1137/090766437
https://doi.org/10.1145/509907.509949
https://doi.org/10.1145/509907.509949
https://doi.org/10.1145/2566486.2568018
https://doi.org/10.1145/2027216.2027217
https://doi.org/10.1109/FOCS.2006.79
https://doi.org/10.1109/FOCS.2006.79
http://arxiv.org/abs/1512.06238
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/2993749.2993766
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
http://www.jmlr.org/proceedings/papers/v23/bubeck12b/bubeck12b.pdf
https://doi.org/10.1145/2020408.2020579

24:24 T. Lykouris and S. Vassilvitskii

[18] Richard Cole and Tim Roughgarden. 2014. The sample complexity of revenue maximization. In Symposium on Theory

of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014. 243–252. DOI:https://doi.org/10.1145/2591796.
2591867

[19] Peter J. Denning. 1968. The working set model for program behavior. Commun. ACM 11, 5 (May 1968), 323–333.
DOI:https://doi.org/10.1145/363095.363141

[20] Matthias Englert, Heiko Röglin, and Berthold Vöcking. 2016. Smoothed analysis of the 2-opt algorithm for the general
TSP. ACM Trans. Algorithms 13, 1 (2016), 10:1–10:15. DOI:https://doi.org/10.1145/2972953

[21] Hossein Esfandiari, Nitish Korula, and Vahab Mirrokni. 2015. Online allocation with traffic spikes: Mixing adversarial
and stochastic models. In Proceedings of the Sixteenth ACM Conference on Economics and Computation. ACM, 169–186.

[22] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and Neal E. Young. 1991. Competitive
paging algorithms. J. Algorithms 12, 4 (Dec. 1991), 685–699. DOI:https://doi.org/10.1016/0196-6774(91)90041-V

[23] Amos Fiat, Yuval Rabani, and Yiftach Ravid. 1994. Competitive k-server algorithms. J. Comput. System Sci. 48, 3 (1994),
410–428. DOI:https://doi.org/10.1016/S0022-0000(05)80060-1

[24] Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online algorithms for rent-or-buy with expert advice. In Pro-

ceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research),
Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach, California, USA, 2319–2327.
http://proceedings.mlr.press/v97/gollapudi19a.html.

[25] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-based frequency estimation algorithms. In
International Conference on Learning Representations (ICLR).

[26] Piotr Indyk, Frederik Mallmann-Trenn, Slobodan MitroviÄĞ, and Ronitt Rubinfeld. 2020. Online Page Migration with
ML Advice. arxiv:cs.DS/2006.05028

[27] Zhihao Jiang, Debmalya Panigrahi, and Kevin Sun. 2020. Online algorithms for weighted paging with predictions. In
Proceedings of the 47th International Colloquium on Automata, Languages and Programming (ICALP).

[28] Tim Kraska, Alex Beutel, Ed H. Chi, Jeff Dean, and Neoklis Polyzotis. 2017. The case for learned index structures.
https://arxiv.org/abs/1712.01208.

[29] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. 2020. Online scheduling via learned
weights. In Proceedings of the Twenty-Third Annual Symposium on Discrete Algorithms (SODA).

[30] Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. 2018. Stochastic bandits robust to adversarial corruptions.
In Proceedings of the 50th ACM Annual Symposium on Theory of Computing (STOC).

[31] Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive caching with machine learned advice. In Proceedings of

the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research). PMLR, 3296–3305.
[32] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. 2012. Online optimization with uncertain information.

ACM Trans. Algorithms 8, 1 (2012), 2:1–2:29. DOI:https://doi.org/10.1145/2071379.2071381
[33] Andrew McGregor. 2014. Graph stream algorithms: A survey. SIGMOD Rec. 43, 1 (May 2014), 9–20. DOI:https://doi.

org/10.1145/2627692.2627694
[34] Andres Muñoz Medina and Sergei Vassilvitskii. 2017. Revenue optimization with approximate bid predictions. In

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems

2017, 4-9 December 2017, Long Beach, CA, USA. 1856–1864.
[35] Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. 2012. Simultaneous approximations for ad-

versarial and stochastic online budgeted allocation. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. 1690–1701. http://portal.acm.org/citation.cfm?
id=2095250&CFID=63838676&CFTOKEN=79617016.

[36] Michael Mitzenmacher. 2018. A model for learned bloom filters and optimizing by sandwiching. In Advances in Neural

Information Processing Systems (NeurIPS).
[37] Michael Mitzenmacher. 2020. Queues with small advice. CoRR abs/2006.15463 (2020). arxiv:2006.15463https://arxiv.

org/abs/2006.15463.
[38] Jamie Morgenstern and Tim Roughgarden. 2016. Learning simple auctions. In Proceedings of the 29th Conference on

Learning Theory, COLT 2016, New York, USA, June 23-26, 2016. 1298–1318. http://jmlr.org/proceedings/papers/v49/
morgenstern16.html.

[39] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge University Press, New York, NY,
USA.

[40] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving online algorithms via ml predictions. In Advances

in Neural Information Processing Systems. 9661–9670.
[41] Alexander Rakhlin and Karthik Sridharan. 2013. Online learning with predictable sequences. In Proceedings of the

26th Annual Conference on Learning Theory (COLT).

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

https://doi.org/10.1145/2591796.2591867
https://doi.org/10.1145/2591796.2591867
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/2972953
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/S0022-0000(05)80060-1
http://proceedings.mlr.press/v97/gollapudi19a.html
https://arxiv.org/abs/1712.01208
https://doi.org/10.1145/2071379.2071381
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/2627692.2627694
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095250&CFID=63838676&CFTOKEN=79617016
https://arxiv.org/abs/2006.15463
https://arxiv.org/abs/2006.15463
http://jmlr.org/proceedings/papers/v49/morgenstern16.html
http://jmlr.org/proceedings/papers/v49/morgenstern16.html

Competitive Caching with Machine Learned Advice 24:25

[42] Dhruv Rohatgi. 2020. Near-optimal bounds for online caching with machine learned advice. In Proceedings of the 2020

ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, Shuchi Chawla
(Ed.). SIAM, 1834–1845. DOI:https://doi.org/10.1137/1.9781611975994.112

[43] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael
Young, Jean-Francois Crespo, and Dan Dennison. 2015. Hidden technical debt in machine learning systems. In Pro-

ceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15). MIT Press, Cam-
bridge, MA, USA, 2503–2511. http://dl.acm.org/citation.cfm?id=2969442.2969519.

[44] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update and paging rules. Commun. ACM 28,
2 (Feb. 1985), 202–208. DOI:https://doi.org/10.1145/2786.2793

[45] Daniel A. Spielman and Shang-Hua Teng. 2004. Smoothed analysis of algorithms: Why the simplex algorithm usually
takes polynomial time. J. ACM 51, 3 (2004), 385–463. DOI:https://doi.org/10.1145/990308.990310

[46] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
2014. Intriguing properties of neural networks. In International Conference on Learning Representations. http://arxiv.
org/abs/1312.6199.

[47] Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. 2020. Partitioned learned bloom filter. CoRR

abs/2006.03176 (2020). arxiv:2006.03176 https://arxiv.org/abs/2006.03176.
[48] Alexander Wei. 2020. Better and simpler learning-augmented online caching. In International Conference on Approx-

imation Algorithms for Combinatorial Optimization Problems (APPROX).

Received August 2019; revised August 2020; accepted January 2021

Journal of the ACM, Vol. 68, No. 4, Article 24. Publication date: July 2021.

https://doi.org/10.1137/1.9781611975994.112
http://dl.acm.org/citation.cfm?id=2969442.2969519
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/990308.990310
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://arxiv.org/abs/2006.03176

