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Abstract

Motivated by the fact that competitive analysis yields too pessimistic results when applied to the paging problem,
there has been considerable research interest in refining competitive analysis and in developing alternative models
for studying online paging.

In this paper, we propose a new, simple model for studying paging with locality of reference. The model is closely
related to Denning’s working set concept and directly reflects the amount of locality that request sequences exhibit.
We use the page fault rate to evaluate the quality of paging algorithms, which is the performance measure used in
practice.

We develop tight or nearly tight bounds on the fault rates achieved by popular paging algorithms such as LRU,
FIFO, deterministic Marking strategies and LFD. These bounds show that LRU is an optimal online algorithm,
whereas FIFO and Marking strategies are not optimal in general. We present an experimental study comparing the
page fault rates proven in our analyses to the page fault rates observed in practice.
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1. Introduction

Pagingis a fundamental and extensively studied problem. Consider a two-level memory system con-
sisting of a small fast memory, that can hélgages, and a large slow memory. The system must serve
a sequence of requests to memory pages. A request can be served if the page to be accessed is in fa
memory. If a requested page is not in fast memorgage faultoccurs. The missing page must then
be loaded into fast memory and, simultaneously, a page must be evicted from fast memory in order to
make room for the new page. A paging algorithm decides which page to evict on a fault. This decision
must usually be madanling i.e., without knowledge of any future requests. The goal is to minimize the
number of page faults.

Early work on paging analyzed online algorithms assuming that request sequences are generated
by probability distributions, see e.g10]. Sleator and TarjafiL5] introduced competitive analysis and
showed that the paging strategies least-recently-used (LRU) and first-in-first-out (FIFO) achieve an op-
timal competitive ratio ok. An online algorithmA is c-competitive if, for all request sequences, the
number of page faults incurred byis at most times the number of faults incurred by an optimal offline
algorithm. Practitioners criticized these results because, in practice, LRU and FIFO achieve performance
ratios that are much smaller thierAn experimental study presented by YoUfa§] shows ratios between
1, 2 and 3. It is also known that LRU outperforms FIFO and general deterministic Marking strategies,
such as flush-when-full (FWF ), which are alsaompetitive[17]. Thus, competitive analysis does not
properly discern between the behavior of different algorithms. The flaw of competitive analysis is that it
considers arbitrary request sequences, whereas, in practice, request sequences have some structure, i.
they exhibitlocality of reference

For this reason there has been considerable research interest in refining competitive analysis and
developing alternative models for studying online paging. Ydl&jand Borodin et al[2] initiated this
line of research. Youn{l8] defined the notion ofoose competitivenesahere paging algorithms are
evaluated for varying fast memory sizes, ignoring input sequences that give a high competitive ratio for
only a few sizes of the fast memory as well as sequences giving a low fault rate for most sizes of the
fast memory. Borodin et aJ2] introduced the concept afccess grapht model locality of reference.

In an access grapB, each node represents a memory page. A request sequence is consisténif with

a request to a pageis followed by a request to a page that is adjaceqtitothe graph. Access graphs

were also studied in a number of subsequent pape8s9,11] It was shown that paging algorithms
taking the underlying access graph into account can outperform standard paging algorithms and that the
competitiveness of LRU is never worse than that of FIFO. Karlin di.dl. modeled locality of reference

by assuming that request sequences are generatelbaykav chain They analyzed the page fault rate

of paging algorithms and developed an algorithm that achieves an optimal fault rate, for any Markov
chain. Torng[17] analyzed theotal access timef paging algorithms. He assumes that the service of

a request to a page in fast memory costs 1, whereas a fault incurs a perglty of 1. In his model

a request sequence exhibits locality of reference for working sets ohsizéhe average length of a
maximal subsequence containing requests tistinct pages is much larger tham Note that there is

some similarity withf 1 defined in Sectio®. Koutsoupias and Papadimitri¢i3] proposed theliffuse
adversarymodel for studying general online algorithms. In this model a request sequence is generated by
a probability distributiorD that is chosen from a clagsof distributions known to the online algorithm.
Koutsoupias and Papadimitriou also introducedmparative analysighich compares the performance

of algorithms from given classes of algorithms.
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Fig. 1. Working set size as a function of the window size.

In this paper, we propose a new model for studying paging with locality of reference.

e The model is very simple and closely related to Denning’s working set nj6fdt directly reflects
the amount of locality exhibited by request sequences. We restrict the class of request sequences from
which an adversary may choose a sequence but make no probabilistic assumptions regarding the input.

e We evaluate paging algorithms in terms of their fault rate, the performance measure used by practi-
tioners. We give tight or nearly tight bounds on the fault rates achieved by LRU, FIFO, deterministic
Marking strategies and longest-forward-distance (LFD). We show that LRU is an optimal online al-
gorithm in our model but that FIFO and marking strategies are not optimal in general.

e We have performed an experimental study with request sequences from standard corpora, comparing
the fault rates proven in our analyses to the fault rates observed in practice. The gap between the
theoretical and observed fault rates is considerably smaller than the corresponding gap in competitive
analysis. This is the first time that the theoretical bounds developed in an alternative paging model are
compared to the performance observed in practice.

2. The model

In modeling locality of reference we go back to the working set concept by Derf@jAgthat is
also used in standard text books on operating sysigrh6]to describe the phenomenon of locality. In
practice, during any phase of execution, a process references only a relatively small fraction of its pages.
The set of pages that a process is currently using is calleddhidng set Determining the working set
size in a window of size at any pointin a request sequence, one obtains, for vamabl&inction whose
general behavior is depicted in Fig.The function is increasing and concave. Denrjghows that this
is in fact a mathematical consequence of the working set model, assuming statistical regularities locally
in a request sequence.

Inspired by this simple and natural model we devise two ways of modeling locality of reference. In
both models, we assume that an application is characterized by a concave filintiempplication
generates request sequences thatansistent with.fin theMax-Modela request sequence is consistent
with f if the maximum number of distinct pages referenced in a window ofrsiget mostf (n), for any
n € N. In the Average-Modeh request sequence is consistent Viththe average number of distinct
pages referenced in a window of sizés at mostf (n), for anyn € N.
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In our model the functio characterizes the maximum/average working set size globally in a request
sequence, whereas the original working set model considers working set sizes locally. The Max-Model is
closely related to the original working set model. On the other hand, the Average-Model permits a larger
class of request sequences. It is interesting if an application changes the working set completely at certain
times in a request sequence.

We performed extensive experiments with traces from standard corpora, analyzing maximum/average
working set sizes in windows of size see Sectioi for details. In all of the cases, the functions have an
overall concave shape. Even in very large windows, the number of distinct pages referenced is very small.
This demonstrates that the model we propose here is indeed reasonable for studying paging algorithms.

What properties do relevant functiofisave, apart from being increasing and concave? Since windows
of size 1 contain exactly one paggl) = 1. If windows of sizen contain at mosinpages, then a window
of sizen + 1 can contain at most + 1 pages. Thus, in the Max-Modélis surjectiveon the integers
between 1 and its maximum value, i.e., for all natural numbeletween 1 and syg(n) | n € N},
there exists an with f(n) = m.

For a given application, a good approximationfaé easy to determine. One only has to scan a
sufficiently long request sequence and compute the maximum/average number of pages in windows of
sizen. A function obtained by analyzing real data might not be concave in all intervals. However, this is
no problem. Essentially, we can use any concave funétibat is an upper bound on the observed data
points, e.g., we can take the upper convex hull of the points. We only need @ais an upper bound
on the maximum/average number of pages in windows ofrsiaed f (r) need not even be integral for
all n. Therefore, we will work with general functions N — R, which will allow us to state concavity
in a simple way.

Definition 1. A function f: N — R is concavé if

(i f)=1land

(i) YneN: f(n+1D) — fm) > f(n+2) — f(n+1) >0.

In the Max-Model we additionally require thtbe surjective on the integers between 1 and its maximum
value.

Both in the Max- and in the Average-Model, given a concalumctionf, we will analyze the per-
formance of paging algorithms on request sequences that are consistemt Rrdtctitioners use the
fault rateto evaluate the performance of paging algorithms. We will use this measure, too. For a paging
algorithm.A and a request sequengdet . A(s) be the number of page faults incurred dyon ¢ and let
|o| be the length of. The fault rate ofd ong is F4(s) = A(0)/|o|. We are interested in the worst case
performance on all sequences that are consistentfwith

Definition 2. The fault rate of a paging algorithm with respect to a concavdéunctionf is

FA(f) :=inf{r | 3n € N: Vo, o consistent withf, |¢| > n: F4(c) < r}.

Throughout the paper, we willassume that the functions considered are corMaveover, we assume
that the functions have maximum values of at ldastl, since otherwise the fault rate of any reasonable
paging algorithm is 0.
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3. Algorithms

We briefly describe the algorithms analyzed in this paper.

e LRU (Least-Recently-Used): on a fault, evict the page whose most recent request was earliest.

e FIFO (First-In-First-Out): on a fault, evict the page that has been in fast memory longest.

e Deterministic Marking algorithmsa request sequence is processed in phases. At the beginning of a
phase, all pages are unmarked. Whenever a page is requested, it is marked. On a fault, an arbitrary
unmarked page is evicted from fast memory. A phase ends immediately before a fault when there are
k marked pages in fast memory. LRU is a marking algorithm.

o FWF (Flush-When-Full): FWF is a very primitive marking algorithm which, at the end of each phase,
evicts all pages in fast memory.

e LFD (Longest-Forward-Distance): evict the page whose next request is farthest in the future.

LFD, in contrast to the online algorithms mentioned above, is an offline algorithm that cannot be applied
in practice. However, since LFD is an optimal offline algorithm—on any request sequence it achieves the
minimum number of page faulfd]—it is interesting to analyze its fault rate.

4. Results

Both for the Max- and the Average-Model we develop tight or nearly tight bounds on the fault rates
achieved by popular paging algorithms such as LRU, FIFO, deterministic Marking strategies and LFD. The
results are summarized in TalleM denotes the maximum number of distinct pages that can be requested
in any sequence consistent wittand £ ~1 is the inverse function df formally defined in SectioB. For
the Average-Model, we state only approximate fault rates for the class of marking algorithms, FWF, and
LFD. The exact (and more complicated) values can be found in the text in this section and in Sections
6.3and6.4. Though it does not appear from the table, these bounds are actually tight.

In Section5, we investigate the Max-Model. We prove a general lower bounﬁ:@z’f];ll—)_z on the
fault rate of deterministic online paging algorithms, and prove that the fault rate of LRU exactly matches
this lower bound. Hence, LRU is an optimal deterministic online algorithm in the Max-Model.

LRU is a special Marking strategy. We show, however, that general deterministic Marking strategies
are not as good as LRU. We prove a lower boun%gf(k’jrﬁ on the fault rate of a class of Marking

algorithms thatincludes FWF. We further prove that this class is worst possible among Marking algorithms,
i.e., we prove an upper bound on the fault rate of any Marking algorithm matching this lower bound.
For FIFO, we prove a lower bound ; ,k;fr/lk)_l and an almost matching upper bound;e{(k’;il)_l.
The gap between the lower bound for FIFO and the fault rate of LRU is small. However, in our experiments
the difference in the fault rates observed for LRU and FIFO is also small, see Séction
We finally study LFD and show that its fault rate depends on the total nuMlzéipages that may be
requested. We show that LFD has a fault rate of at Ieasl{?aq?’iw)_l}, where the maximum is taken
over all positive integersywith m + k < M. We prove an upper bound that is about a factor of 2 away
from this lower bound.
In Section6, we study the Average-Model. We prove that every deterministic online paging algorithm

has a fault rate of at leagt** =1,
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Table 1
Fault rates of all algorithms considered in this work

Max-Model Average-Model
Online > f*l(kk;jl)—z > %1)—1
LRU = T2 = [o4h=2
FIFO > b < Foena = [
Marking < 1"1(++1)—1 <3P
FWF = f—1(++1)4 ~ g@
LFD > max | ot | <2, max (e ~ e

k+m < M k+m < M

In the Average-Model, both LRU and FIFO are optimal, i.e., they achieve a fault rate equal to the lower
bound. On the other hand, there are Marking strategies that are considerably worse. We identify a class
of Marking algorithms including FWF and concavieinctions for which the fault rate is approximately
%%. If kis even, the exact fault rate i _"Fz@ If kis odd, then there is an additivel/k in the
denominator of the first term. We prove that this is the worst possible fault rate for Marking algorithms.

We also develop tight bounds for LFD. The fault rate depends again on the total nivhdigrages
that may be requested. kfis odd, then the exact fault rate j&=% L&D i k is even, there is an
additive—1/(k + 1) in the denominator of the first term.M is approximatelk, LFD has page fault rate
close to 0, as expected.M is large compared tk, the fault rate is close téﬁ.

In Section7, we present the experimental study mentioned already a few times in this text. We first
demonstrate that our models for quantifying locality is indeed reasonable from a practical point of view
and then compare the fault rates developed in our models to the fault rates observed in practice.

For the Max-Model, the results are quite good. The gap between the theoretical and observed bounds
is considerably smaller than the corresponding gap in competitive analysis, unless the size of the fast
memory is extremely small. As the size of the fast memory increases, the gap decreases and is very small
for large fast memories.

For the Average-Model, the results are not as good. Here, we still have a considerable gap between the
theoretical and observed fault rates. Our explanation for this phenomenon is as follows. The Average-
Model permits a larger class of request sequences than the Max-Model. This larger class may contain
request sequences that cause high fault rates in the mathematical analyses but typically do not occur in
practice. We conclude that while the Average-Model is interesting from a mathematical point of view, the
Max-Model seems to model more accurately the request sequences that occur in practice.

5. Paging in the Max-Model

We first study the Max-Model. Given a concévanctionf, f(n) is an upper bound on the maximum
number of distinct pages encountered in ammpnsecutive requests of a request sequence. In this section,
we will assume thaff (2) = 2, becausef (2) < 2 only permits request sequences referencing a single
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page, and for such sequences the page fault rate of any reasonable algorithmis 0. Furthermore, we conside
only the case& > 2. If k = 1 an adversary can easily cause a fault rate of 1 for any paging algorithm
becausef (2) = 2. For the analyses of the fault rates we need to define the inverse functiohef

M =sug|f(n)| | n e N}.Definef~L:{m e N | m < M} - N by

F7Ym) == min{n e N | f(n) > m).

Thus, f~1(m) is the smallest possible size of a window containinglistinct pages. The following
proposition will be crucial in our analyses.

Proposition 1. f~1is a strictly increasing function satisfying

Frm)y— fFfm-10 > fm-1)— fm—2 foral3<m< M.

Proof. We prove the stated inequality. Singel(2) — f~1(1) = 1, this immediately implies that 1 is
strictly increasing.

Sincef is surjective on the integers between 1 and its maximum value (Defiditjdmere exist integers
Nm—2, Bm—1, andn,, such thatf (n,,—2) =m — 2, f(nyp—1) =m — 1, andf (n,) = m,for3<m < M.
Now,

ny,—1
1= fn) — fm-1) = Y (fGE+D—f0)
I=n;,_1
and
np—1—1
1= f(m)—fom2 = Y (fi+D—[f0).
i=np—2

Sincef is concave (Definitiord (ii)), each term in the second sum is at least as large as each term in the
first sum, so the first sum must have at least as many terms as the second one. Therefore,

SR = A m =D =np—np 11— 2= f"tm—1 - ftm-2),
proving the proposition. O

We first develop a lower bound on the fault rate that can be achieved by any deterministic online paging
algorithm and then show that LRU is optimal.

Theorem 1. Let.A be any deterministic online paging algorithm. Then

k-1

Fa(f) > f_lTl)—Z
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Proof. We construct a family of request sequenegswhere the lengtim of a sequence can be made
arbitrarily large, such thatl’s fault rate on any of the sequences is at least the desired bound. We need
k-+1distinct page®s, ..., prr1- Arequest sequence is constructegiaseseach of which has a length
of f~1(k +1) — 2 and is composed @&f— 1 blocks A block is a subsequence of requests, all to the page
that was not ind’s fast memaory at the end of the previous block. Thd$ias a cost of 1 in each block and
a cost ofk — 1 in each phase. In each phase, blpck< j < k — 1, starts with request~1(j + 1) — 1.
Note that the partitioning of the phases into blocks is well-defined, sfiige= 2. Thus, the first block
of a phase starts with the first request of the phase. Within a phase,jplbgk; < k — 1, has a length
of (flj+2-D—-(1G+D -1 =f1+2 - 1 +1).ByPropositior, f~1is strictly
increasing. Thus, the blocks are non-empty and the constructed sequence is well-defined. Also, within a
phase the block lengths are non-decreasing.

It remains to show that the request sequence is consistent.wWiththis end it suffices to show that
any subsequence wifldistinct pages has a length of at legst!(j). For 1< j < 2, there is nothing to
show becausg~1(j) = j in this case. The most interesting rangg &f 3< j < k. Any subsequence
with j distinct pages must (partially) cover at lepstnsecutive blocks. Since the blocks are homogenous
with respect to the requested page, a subsequence of minimal lengihdigitimct pages only contains
the last request of the first block partially covered and, analogously, only the first request of the last
block partially covered. Extending the subsequence further into the first or last block, we do not gain any
additional pages but only increase the length of the subsequence. As stated above, the block lengths in &
phase are non-decreasing. Thus, a subsequencg aifttinct pages of minimal length fully covers the
first j — 2 blocks of a phase and includes the last request of the previous phase as well as the first request
ofblock j — 1. Thelengthis F~1(j) — 1) + 1= f~1()).

We finally have to considef = k + 1. A subsequence with+ 1 distinct pages must partially include
at leastt + 1 blocks and has a length of at Ieé;ﬂ”l(k +1 — 2) +2=f1k+1. O

k—1

Theorem 2. The fault rate of LRU i < —.
LRU(f) kD) -2

Proof. Let ¢ be an arbitrary request sequence consistent fwlife partition the request sequence into
phases such that each phase contains ex&actlyl faults made by LRU (except for possibly the last
phase) and starts with a fault. In general, ithiephase; > 2, starts with th€(i — 1)(k — 1) + 1)st fault

and ends immediately before thigk — 1) + 1)st fault. The last phase might be incomplete. LRU incurs

a cost of at most — 1 per phase. We show that each phase, except for possibly the first and the last one,
has a length of at leagt~1(k 4+ 1) — 2. Consider an arbitrary phagedifferent from the first and the

last phase. We argue that the subsequenesstdrting at the last request befd?end ending at the first
request afteP (including that request) contaias+ 1 distinct pages. This implies thBthas a length of
atleastf ~1(k + 1) — 2. Letx be the page referenced by the last request béfoRhaseP and the first
request afteP includek page faults. If these page faults are on distinct pages differentxrdnen we

are done. If one of the faults is onthenx must have been evicted ihat some fault to a page At that

time x was the least recently requested page in fast memory and hence we have identifiedistinct

pages in our subsequence. The same argument applies to the case that LRU faults twice on requests t
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some page, z # x. To concludeg consists of at most

1+ L < L +2
fYk+1) -2 ° flk+1 -2
phases, wheré denotes the length of the first phase. In each phase LRU has at madsfaults. Thus,
the fault rate orr is bounded by
k—1 n 2k — 2
flk+1) -2 lo|
where the last term gets arbitrarily small for increadislg O

’

LRU is a special Marking strategy. We show, however, that Marking algorithms, in general, are not as
good as LRU, i.e., there is a class of Marking algorithms including FWF that have a higher fault rate. In
the following, we first give an upper bound and then provide a matching lower bound.

Theorem 3. The fault rate of any Marking algorithiM is
Fm(f) < ‘
MUTE ey -1

Proof. A Marking algorithmM partitions a request sequeneénto phases consisting of requestto
distinct pages (except for possibly the last one) such that it incurs a fault on the first request of each phase.
Any subsequence that starts at the beginning of the phase and ends immediately after the first request o
the next phase has lengftr1(k + 1) because thk pages requested in the phase are all different from the
first page requested in the next phase. Thus, all but the last phase have a length offatigastl) — 1
each. The request sequence consists of at most
o] o]
- | —— 41
{f‘l(k D J k-1

phases, each causing at mk$ults. Thus, the fault rate anis bounded by

k ( lo| n 1) - k n k
lol \f71k+1D —1 MDD -1 ol
The next theorem implies that the upper bound of Thed@@&annot be improved, in general.

Theorem 4. There are Marking strategiedt*, including FWF whose fault rates are

k
Fae(f) = k1D 1

Proof. We simultaneously describe the family of request sequesicasd the behavior of the Marking
algorithmsAM . As usual we need a set bH- 1 pages1, - .., pr+1. A request sequence consists of the
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phasegonstructed by the given Marking algorithm. Each phase is composeuatks where a block is
a subsequence of requests to the same page. Within a phasg,iiscklength of ~1(j +1) — £ ~1(j),
for 1 < j < k. Propositionl ensures that the block lengths are well-defined, i.e., they are non-zero, and
non-decreasing in a phase. The total length of a phagefigk + 1) — 1.
In the first phase, thgh block consists of requests 09, 1 < j < k. Suppose that we have already
constructed phases such that each phase contains exadtbtinct pages. We show how to construct the
(i + 1)st phase. The first block of phase- 1 consists off ~1(2) — f~1(1) = 2— 1 request to the unique
page that was unmarked at the end of pha$be Marking algorithmM* has a fault on this request. We
assume thatf* evicts the page that was requested in the last block of ghakse that this is the case
for FWF. Each of the next — 1 blocks of the phase references the page that is not in the fast memory
of M* at the beginning of that block. Thus#* has a total ok faults in a phase, which gives the desired
fault rate. The pages requested in khidocks of a phase are distinct. By construction, the page requested
in the second block of a phase is equal to the page requested in the last block of the previous phase.
It remains to prove that the request sequence is consistent. With show that any subsequence with
j distinct pages has a length of at legst'(j), 1 < j < k + 1. Forj € {1, 2}, there is nothing to show
becausef ~1(j) = j for these two values. For agywith 3 < j < k + 1, a subsequence wijtdistinct
pages must partially cover at leg@sbnsecutive blocks because blocks are homogenous with respect to the
requested page. The block lengths are non-decreasing in a phase. Thug, £ %, a subsequence with
j distinct pages of minimal length starts at the beginning of a phase and ends after the first request of block
j. The length is exactly —1(j). The final casg = k + 1 needs some extra arguments. A subsequence
with k& 4+ 1 distinct pages must contain requests from two consecutive phases. If the subsequence fully
covers some phasethen we are done because a phase has lefigttk + 1) — 1 and one additional
request must be covered. Otherwise the phase partially covers two consecutiva phases1. In this
case the subsequence must partially cover at ke@st blocks because the page in #tle block of phase
i is the same as the second block of phasel. Since the length d consecutive blocks is exactly equal
to the length of a phase, the subsequence has length a(jéd:{k +1) — 1) +1=fYk+1. O

In the following, we show that FIFO is not an optimal online algorithm in our model. We first develop
a lower bound on FIFO’s fault rate and then present a nearly matching upper bound.

Theorem 5. If f=1(4) — f~1(3) > f~1(3) — r~1(2), then

k—1/k

FFIFO(f) = m

Straightforward algebraic manipulations show that the fault rate of FIFO given in the last theorem is
in fact larger than that of LRU. The condition dmeans that there must be some locality in windows
of size 5, i.e.,f (5) < 4. We can relax the constraint such that there must be some locality in the request
sequence, i.eft(m)— f~tm—1) > f~Y(m —1) — f~1(m — 2) for somem > 3, but then our lower
bound becomes slightly weaker.

Proof of Theoremb. Let po, . . ., pr bek+1 distinct pages. We construct a family of request sequences
A request sequence consists of an initial requegi; tiollowed by a sequence phaseseach composed
of k — 1 blocks The blocks are not homogeneous; each block consists of one request to some, page
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0<i <k -1, followed by one or more requests pp, depending on the length of the block. In the
sequence of blocks, the paggs. ..., px—1 are requested in cyclic order, i.e., in tfth block in the
request sequence the first request is mage t01) modx. The block lengths are as follows. In any phase,
the first block has lengtli—1(3) — £ ~1(2) +1 and thgth block has a length of 1(j +2) — f~1(j + 1),
for j =2,...,k — 1. By Propositiorl and the condition ofy the block lengths are non-decreasing, the
first block having a length of ~1(3) — f~%(2) + 1 > 3— 2+ 1 = 2. Thus, each block contains at least
one request tgy. The total length of a phase 51k +1) — f~1(2)+ 1= f~L(k+1) — 1. Inthe rest

of the proof we will argue that the constructed request sequence is indeed consistdrarniitinat in
anyk consecutive phases, which we caBuper phaseFIFO incurs(k — 1)(k + 1) faults. This gives a
fault rate of

k—-Dk+1)  k—-1/k
k(f~Yk+1) -1 [ lk+1) -1

as desired.

We first prove consistency with by arguing that any subsequence wijthltistinct pages has a
length of f~1(j). For j € {1, 2} there is nothing to show. Considerj avith 3 < j < k. Any subse-
quence withj distinct pages must span more than a block because a block contains only two distinct
pages. A subsequence of minimal length does not start with a prefix of requegtbeocause that page
is contained in the next block anyway. Thus, it starts at the beginning of a block and extends at least
beyond the first request of thg — 2)nd following block. Since block lengths are non-decreasing in a
phase, a subsequence wijitfistinct pages has a length of at legsti(j) + 1 — f~1(2) + 1= f~1()).

Finally, a subsequence with+ 1 distinct pages must span more than a phase and hence its length is at
leastf~L(k + 1).

We now analyze the number of faults made by FIFO in a super phase. Assume that the initial fast
memory is empty. FIFO first misses @i and then orpy, ..., pr_1, which are requested in the ndxt
blocks. Onk consecutive faults, FIFO never misses twice on the same page. Thus, the fault sequence is
Pk, PO, - - - » Pk—1, Which repeats in cyclic order. We show inductively that FIFO misses on the first request
of each block. This clearly holds for the filsblocks. Suppose that FIFO misses on the first request of
blockj, j > k. If pagep; withi < k — 1 is requested, thep, 1 is evicted, which is referenced in block
J + 1. If pr_1 is requested, thep, is evicted, which is referenced in the same block. The faulppn
causes an eviction gfy, requested in the next block. Our proof also shows that FIFO has two page faults
on any block with a request to,_1. In anyk consecutive phasek,— 1 of these contain such a block.
Thus, in any super phase the total number of page fautt&is- 1) + k — 1= (k+ Dk — 1. O

We complement our lower bound by giving a nearly matching upper bound.

k

Theorem 6. The fault rate of FIFO i <—.
FiFo(/f) Tkt -1

Proof. On anyk + 1 consecutive faults in a request sequeticBIFO never faults twice on the same
page. Partitio into phases such that each phase contains exXafalylts made by FIFO and starts with
a fault. Consider a subsequence that spans one full phase and includes the first request of the next phase
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The subsequence covers- 1 faults, i.e.k + 1 distinct pages. Hence, its length is at leAst (k + 1),
and the phase length is only 1 smaller]

We next give bounds on the fault rate of LFD.

Theorem 7. The fault rate of LFD is

m
Firp(f) = max {f—l(k+m+1)—2}'

k+m <M

Proof. Fixanm € N andN = k + m pagespo, . .., pn—1. We construct a family of request sequences

in phases, where each phase has a lengjfiTéfN + 1) — 2. Each phase is composedf— 1 blocks,

thejth block in a phase having a length pf1(j +2) — f~1(j +1),forj = 1,..., N — 1. In the overall
sequence, the pages, ..., py_1 are requested in cyclic order, i.e., thik block consists of requests

to pagep(;—1ymodn, for any positive integey. The page referenced in the last block of a phase is not
requested in the following phase but resides in LFD’s fast memory at the end of the phase. Thus, among
the N — 1 pages requested in the next phase, @y 1 of these can be in LFD’s fast memory at the
beginning of the phase. Hence, LFD incurs at lgast- 1) — (k — 1) = N — k faults in a phase. This

gives the desired fault rate. As in the proof of the general lower bound, we can show that any subsequence
with j distinct pages has a length of at legst!(j), which yields consistency of the constructed request
sequence witlh, [

We prove an upper bound on LFD’s fault rate that is essentially a factor of 2 away from the lower
bound. To prove this upper bound we need the following technical proposition.

Proposition 2. For anyms1, ..., m, € N,

Zf_l(w) >n- fY(m]) wherem = %ng
=1

(=1

Proof. Propositionl implies that
FHmy + [ = fTHm+ D+ f R = 1) (1)

for all m,m’ € N with m’ — m > 2. We now manipulate the suln;_, f~1(m,) as follows. At any

time we keep a sequence ofterms f~1(m1), ..., f~1(m,), where the argument&, are natural
numbers. Initiallys, = my, foré = 1,...,n. Atany time letm = min{m, | £ = 1,...,n} andm’ =

max{mg | £ =1, ..., n}. Whilem’ —m > 2, replace two termg —1(m) and f ~1(m’) by f~1(m +1) and

f~1m’ — 1). By (1), this cannot increase the total sum of the terms. When the process terminates, each
i is either|m] or || + 1. The proposition then follows becaugel(|m| + 1) > f~(|m]). O
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1
Theorem 8. The fault rate of LFD isFipp(f) < 2 max {L} .
Lo LTk m)

Proof. Partition a given request sequence into phases such that each phase containk ebstabigt

pages (except for possibly the last phase) ankibages are all different from the first page requested

in the next phase. Suppose that the partitioning consigipbbsesPy, ..., P,. For any phasg letm;

be the number of new pages, i.e., pages referenced in ptiedevere not referenced in phase 1. We

assume that LFD initially starts with an empty fast memory anehget k. Consider an offline strategy

that performs page swaps without evicting pages that are referenced in the phase. The number of page
faults made by this algorithm in any phasis m;. Since LFD is an optimal offline algorithm, the total
number of page faults made by LFD cannot be larger and is boundee-dy'!_, m; = k + (p — D,

wherem = 1%1 Zf’zz m;. Any two consecutive phaseés- 1 andi containk + m; distinct pages and thus
have a length ofPi_1| + | P;| > f~L(k + m;). The total length o is

)4 )4
1 1
lo| = i_Zl|Pz-| = E;(IPHI + 1P + 5P+ Pp))

14,
> 5 Z F Lk +my).
i=2
By Propositior?, |o| > 3(p — 1) f~1(k + |#n]). LFD’s fault rate orv is

k+ (p — Dim 2 k
F < < — 4+ —.
LFo () o] Xk + ) ol

The second term in the sum becomes arbitrarily small for increasjnghus, LFD’s fault rate is

Flep(f) <2 max |11
LFD(f) <2, MaxX |\ ~=1g o f-

k+m < M

6. Paging in the Average-Model

We now turn to the Average-Model. We need some additional notation. For any seguehpage
requestsqg[i] denotes théh request in ¢ as well as the page requested by < i < |o]. Forl<i < |o|—
£+1, letoy[i] be the windowa[i], i + 1], ..., a[i +£€—1]). Let N, (i) be the number of distinct pages

in g¢[i], and letN, = Zlﬂ[“l N¢(i) . Let Av(£) be the average number of distinct pages in windows

of length¢, i.e., Av(£) = \oliv—éﬂ . Thus, a sequenceconsistent with a given concavéunctionf has
Av(f) < f(),1<L< ol
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k+ 14
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1 k+1 4

Fig. 2. A(¢), an upper bound on A¥).
6.1. A tight lower bound for deterministic algorithms

In this section, we will prove a lower bound éf%)_l on the fault rate of any deterministic paging
algorithm A with respect to any concavdéunctionf. We will build sequences consisting of two parts.
Each sequence has a prefix on whitfaults on each request. To ensure that the sequences are consistent
with f, a suffix consisting of requests to only one page is added.

As a beginning, consider the sequence

a(n,m) = (p1, p2, p3. ---» Pk, Pk+1)" (p1)". n=>k+2, m>k+1

consisting of requests fo+ 1 distinct pages. For convenience, we usually angihdm and refer to the
sequence as. To determine the minimum length of the suffix ensuring that(n, m) is consistent with

a given concavefunctionf, we shall need the following upper bound on the average number of distinct
pages in windows of length 1 < ¢ < |a].

Lemma 1. Forany¢’ > k + 2,let A(¢) be defined as

AW) =1 A+ Ak +Ax(l — (k+1), k+1<eLl,
k+1, L0,
m—k (k+1 — 1+ A1k) .
AMM=1— ———— andAy = see Fig.2).
L k+ Dn4m naa2 v—Gt1  ceefo2)

If m = gn, for some constanf > 0, there exists amg € N such that

forn =no, 1<t <la|, AV(L) < A(L).

Proof. We have
N, N,
AV +1) —AV(L) = trl - ¢
k+n+m—-¢ *k+DLn+m—20+1
_ Neyr = Ne+AV()
T k+Dndm—¢

(2)
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<k
—_——

<p1,...,pk+1, ............ S P, P, P1, ...,p1>

(k+1)n m

Fig. 3. Wheng[r(€)] is extended tay1[r(€)], p1 is included in the window.

and
lo|—£ lo|—+1
Ney1—Ne= ) Negal) — Y NeGi)
i=1 i=1
lo|—2¢

= >~ (Mera) = Ne@) ) = Nellol = £ + D). @)
i=1

The rest of the proof is divided into three cases, according to the three linear pax® offor 1< ¢ <
nk + 1), we letr(¢) = (k + L)n — £ + 1, such that the window,[r(¢£)] is the rightmost window of
length¢ completely contained in the prefiys, p2, p3, .- ., Pk, pk+1)"-

Casel < £ <k + 1. Obviously, A1) = 1 = A(1). It remains to prove A® + 1) — Av(£) < Aq, for
1 < ¢ < k. Thus, assume now thatd ¢ < k. Then no window of sizé contains alk + 1 distinct pages.

For 1<i <r(€), Ne+1(i) — Ne(i) = 1. Fori >r(€) + 1, Ny+1(i) = N¢(i), sinceoy[i] already
contains the paggs1. The boundary case is depicted in Fg.

Thus, Zl-il[[ (Neg1(i) — Ne(i)) = r(@). Sincel < k < m, the rightmost window of lengtft is
completely contained in the suffix, 3¢ (|o| — £ + 1) = 1. Therefore, by3), Nyy1 — Ny =r(€) — 1=
(k+ 1)n — £. Now, by @) and Av¢) < Av(k) <k,
k+Dn—L+k m—k
k+Dn—+m =~ (k+Dn—L+m
1 m—k

k+Dn+m

Av(l+1) —Av(l) <
= A1.

Casek + 1 < £ < ¢': It follows from the previous case that 8v+ 1) < 1+ A1k. Thus, it suffices to
show AV(Z + 1) — Av(¥) < Ap, fork +1 < £ < ¢ — 1. Observe that for all 1 < i < r(¢), it holds that
N¢(i) = k+ 1= Nyy1(i) because > k + 1. Also for alli > r(€), Ne(i) = Ngy1(i) becausep; is
already included inVg(i) . SONy4+1(i) — N¢(i) = 0, for 1<i < |o| — £. Thus, by 8), Ny+1 — Ny =
0— N¢(Jo] — ¢+ 1) < — 1. Now, by @),

-1+ *k+1) - k
k+Dn+m—0  (k+Dn+m—1t"

For any fixede’ andk, Av(¢ + 1) — Av(¢) = O (%), and

AVl +1) —Av(f) <

o — k(m — k) B kqn — k? _an—b
2T+ Dntm@ —(k+1)  (k+iltqn —(k+1) en
a,b,c = O(1). Thus,A» = ©(1). Therefore, there exists anp € N such that A¥¢ + 1) — Av(£) < Ay,
for n > no.
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Caset > ¢': Since there are onl} + 1 distinct pages, it follows that A¢) <k + 1, for all ¢,
1<e<|o]. O

Now, we are ready to calculate the minimum length of the suffix needegtddre consistent with a
given concavéfunctionf.

Lemma 2. For any concave* function { there exists amg € N such that the sequenegn, m) is
consistent with,fas long as: > ng and

k+1— fk+1) k2
m = f(k+l)—1 (k+l)n+m.

Prolof. Assume tham fulfils the inequality above. Le# (¢) be defined as in Lemma, and let¢’ =
fk+1).

If fk+1) >k+1,thenf(¥)>¢,1<e<k+1,sincef(H)=1andf(¢+1)—f) > fEl+2) —

f €+ 1) forall £. In this case, Aw) < f(£), for all £.

Otherwisek + 1 — f(k + 1) > 0. Hencem > gn, whereq > 0 is independent af, as required in
Lemmal. Thus, AW¢) < A(¢), for all £. Moreover,A(1) = 1 = f(1) andA(f 1k + 1)) = k + 1.
Thus, sincef is concave, it suffices to prove thatk + 1) < f(k + 1). This is done using algebraic
manipulations:

k(m — k)

A%+D<f&+b<¢k+1—@:571Z<f&+D
k+1— fk+1) k2
Wl> f(k—l—l)—l (k+1)n+m. O

Lemma 3. Letd’(n, m) be any request sequence consisting of a prefixfof- 1) requests to pages from
{p1, ..., prr1} and asuffix of mrequeststothe pageThenforl < £ < n(k+1)+m,Avy (£) <AV, (0).

Proof. Both sequences have the same length, so it suffices to show that in all corresponding windows the
sequence’ cannot have more distinct pages than

For 1<i < (k+ 1n — k, o hasNy(i) = min{¢, k + 1} which is the maximum possible number
of distinct pages for window length Hence,s’ cannot have more distinct pages in its corresponding
window.

For(k+1)n—k+1 <i < (k+21)n, observe thatthe+1requests[(k+Ln—k+1], ..., o[(k+1)n+1]
are all distinct. Thusg,[i] cannot have more distinct pages in a window starting in this range.

Fori > (k + 1Ln + 1, ¢[i] andd’[i] are identical and there is nothing to prove for windows starting
ateli]. O



S. Albers et al. / Journal of Computer and System Sciences 70 (2005) 145-175 161

Theorem 9. For any deterministic online paging algoriths,

fk+1) -1

Fa(f) > .

Proof. Consider a request sequence of len@th 1)n + m with k + 1 distinct pages. Since the algorithm
is deterministic and can hold onkydistinct pages in its fast memory, we can choose the(first 1)n

requests such that incurs a page fault on every request. The remaimmngquests all go to the page
p1. SoA will have a leastk + 1)n page faults. Letn = W k+n+ ﬂ%zl)fl Then, by
Lemmas 2 and 3, there exists apand a sequence of request sequer@cea m)) o consistent with

f and enforcingk + 1)n page faults when serviced by. Thus, forn > no,

n>=n

nk+1)  nk+1)
Falonm) > =0 = o D m
— 2
_ 1/<1+k+1 f(k+1)+ k )
flk+1) -1 nk+D(f(k+1) —1)
Sk+1) -1 flk+1) —1
k + k2/(n(k + 1)) k+k/n

6.2. LRU and FIFO

When proving upper bounds in the Average-Model we shift the focus from windows to single requests.
Rather than deriving lower bounds on the length of a window containing a certain number of faults or
distinct pages as in the Max-Model, we derive lower bounds on the contribution from single requests to
Ny, foré =koré =k+ 1.

Requests that are not faults are cafiegrequests. To prove that LRU and FIFO are optimal, we show
that each fault contributds+ 1 to Nx41 and, for each free request, there is a further contribution of at
least 1.

fk+1) -1

Theorem 10. The fault rate of LRU i ry(f) < z

Proof. Consider an arbitrary sequengeonsistent witlf. When a page is requested, none of the next
k requests are faults gn Thus, for each page each fault orp is contained irk + 1 windows of length

k + 1 containing no other faults gmand, for each free requestpopthere is a window of length + 1
that does not contain a fault gnand whose first request is a requespt@hus, except for the first and
lastk requests, each fault contributes- 1 to N1, and each free request contributes at least 1:

Nis1 > (k+1) - LRU() + (lo] — LRU(6)) — ¢ = k - LRU(0) + |o] — c,
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i-f0+1 i-1 i

Fig. 4. The windowsg[i — ¢+ 1], ..., aeli — 1].

wherec < 2k(k + 1) is independent ofiz|. Dividing by || yields

k-LRU _
Ak +1) > <°|')|+ lol — ¢ =k.F|_RU(o—)+1—|C—|
g g

and sincers is consistent witH,

f+1) >AK+1) >k-Frulo) +1— <=

lal

Solving for Fi ry (o) yields the desired bound.O

Turning to FIFO, we cannot guarantee that efaiebrequest to a pageis succeeded blyrequests that
are not faults op. Hence, we need an alternative way to prove that each free request contributes at least
1 to Niy1. To this end we use the following lemma.

Lemma 4. For any request sequeneeand any?, 1 < £ < |a|, N¢ is increased by at leadt if a request
is inserted ing.

Proof. Assume that the new requess inserted ins just afters[i — 1], for somei, and lets’ denote the
resulting requestsequence. Fotlj <i—¢,a¢[j] = o,[j],andfori < j < |o|—€+41,0¢[j] = o, [j+1].
Thus, we need only consider the windows$ jmin], - - ., 6¢[jmax] @anda;[jminl, - - ., o [jmax+ 11, where

Jmin=max{i — £+ 1,1} and jmax=min{i — 1, |c| — ¢+ 1}

(see Fig4).
To proveN, > N, + 1 it suffices to prove that

jmax
> (N{G) = Ne(D) + Ni(max+ D) > 1. @)

J=Jmin

Let jmin < j < jmax Theng;[;] contains the requestand the requests isy_1[j]. Therefore N, ()
andNy(j) can differ by at most 1.

If Ny(j) < Ne(j), the last page[j + ¢ — 1] in o[ j] is different from the page requestedibgnd all
pages inse_1[j]1. In other wordsg’[j + ¢] is different from all requests ia,[ 1.
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Let | be the set consisting of the ind@and each of the indices + ¢ such thatV,(j) < Ny(j),
Jmin < J < jmax- We conclude from the previous paragraph that, for eachapaire I, ¢'[a] # o'[b].
Thus,

Jmax
NiGmax+1D > 1] = 1+ Y (Ne(i) — Ny(i)).
J=Jmin

Rearranging, we obtaid) and the lemma is proven. O

fk+1) -1

Theorem 11. The fault rate of FIFO isFriro(f) < .

Proof. Let ¢ be an arbitrary request sequence consistentfwitat ¢” be the subsequence ®tonsisting
only of the requests on which FIFO has a fault. Between two faults on aihgee are faults on at least
k other pages. Thus, no window of lendth- 1 in ¢’ contains the same page twice. Therefore,

Nigq = (k+1)(|d'| —k) = (k + 1) - FIFO(0) — k(k + 1).
By Lemma4,
Ni41 = Niiq + (lo] = FIFO(0)) = k - FIFO(0) + |o| — k(k + 1).

Now, by the same arguments as in the proof of Theat&nthe desired bound is obtained.[

6.3. Marking algorithms

In this section, we prove an upper bound on the fault rate of any marking algorithm of approximately
%%. Furthermore, we prove that there exists a class of marking algorithms, including FWF, and a
concavé function for which the bound is tight.

Theorem 12. For any Marking algorithmM,
A fk)
Fa(f) < 3k + 421]( k £ (k)
k+2—1/k &k

if k is even

if k is odd

Proof. Consider an arbitrary request sequeaceonsistent withf. As a beginning, we will prove that
Fu(o) < %% Analogously to the proof of Theoref®, we will do this by provingv; > %"M(a) —c,
for some constart (i.e., c is independent of the sequence length).

Partitions into phases, P», ..., P,, such that each phase contains exdctistinct pages (except for
possibly the last phase) and tk@ages are all different from the first page requested in the next phase.
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Fig. 6.k even,j > & + 1: ps. is contained in at leagt— j + 1 + % windows contributing tov; .

Thek pages requested in phaBg pg_, pé, e, p;'c, are numbered according to first appearance, i.e., the
first page requested iB; is pi, the first page different fromi is pg, and so on. Each page causes at most
one fault in the phase. For each ph#&sgdets; denote the index of the first requestin i.e.,a[s;] = pi.

. ok .
For2<i<n-—2,letN; denoter,’i r(2k11+1 Ni(j), and note thatv, > Z,'.’:_ZZ N; . Note that the
=Tk

first window contributing tdv,i contains exactlf%} — 1 requests from phase_1 and the last window
contains exactIyL§J requests from phask ;. If the k distinct pages requested B, 2<i <n — 2,
contribute at Ieasfﬁ—2 to Ni , thenny > 37ﬁ2(n —3) = X (kn — 3k) > 3 (M(o) — 3k).

Assume first thak is even. For I< j < ’5 the first request tgvi. is preceded by at leagt— 1 requests
and succeeded by at Ieéstequests inthe phase. Therefqv'?js contained in at Iea%t— 1+ j windows
contributing toN; (see Fig5).

Similarly, for% +1 < j <k, thefirstrequest tp} is succeeded by at ledst- j requests and preceded
by at Ieasé requestsin the phase. Therefqvlf?js containedin atleagt— j + 1+ ’5 windows contributing
to N (see Fig6). Thus,

k
‘ 2k k
N> Z<§—1+j>+ ) (?—j+1> - %
j=1 -
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ThisprovesthaFM(a) < 318 To prove thatfa(o) < 55510, it suffices to show thav] > 4242

+ 5, 2<i<n—2. To do that, note that the first pagﬁrl requested in phas® 1 is not requested
in P Thus pl+1 contributesk to N} .

Assume now thaltis odd. For 1< j < p is contained in at Iea§12— + j windows contributing
to Nk For"“L1 < k, p. is contained in at Iea$:t j + 1+ %1 windows contributing tdv’ . Thus,
Tl k 2
k—1 3k 1
— k—j+1+— )= — +-.
Z( +J)+Z< ]++2) T2
=1 - k+1
J="7
To prove thatF(o) < 3 4’2‘ y I8 it suffices to show than; > 3k+2 g2 = ¥ Lk 1 This

i+1;

inequality holds, since;" " is contalned |rf‘T windows contributing tcNk . O

For the lower bound, we make use of a sequence consistilgdagtinct pages. LetpDown;, =
(P1. P2, ... Ph—1, Ph> Ph—1, - - -, P3, p2) and lete = UpDown; be the concatenation af copies of
UpDown ;,. We refer taupDown 5, as a phase af and subdivide the phases into “up” and “down” subphases,
each of lengtth — 1. Define AJ° (¢) to be the average number of distinct pages in windows of lehth
an infinitely long sequenagpbow }, i.€., forn — oo. To calculate A®(¢) and prove that it is concave
we shall need the following lemma.

1 l
Lemmas. Forl<£<2h =3 AP+ —AE@) =1- 37— LEJ

Proof. Since the sequence has unbounded length, the average is the same inplbits; phases.
Furthermore, averaging over a single “up” or a single “down” subphase gives the same result due to the
symmetry of the sequence. We choose to analyze an “up” subphase.

Let No°, 0 < £ < 2h — 3, be the sum of the number of distinct requests i alll windows of lengttt
starting within the considered “up” subphase. In order to prove the lemma, we show

(h— DAV +1) —AVRO) = NSy — N° =h — [£/2] — 1.

Case0 < ¢ < h — 1: Obviously, the first — ¢ windows of lengthY get a new page when lengthened by
1 position. Also some windows starting towards the end of the “up” subphase coaibtN 2 — N°.
Precisely, forr odd, the last¢/2| windows get a new page and, foeven, there aré/2 — 1 windows
of this kind. Thus,

14
=|, +¢odd L
N;il—N;O=h—£+{£2J1 zeven}zh_bj_l'

Caseh < ¢ < 2h — 3: Again, we determine the number of windows that contribute 1 to the differ-
enceNy7, — N;°. The first window cannot contribeta 1 because it already coverslistinct pages.
Subsequent windows can only contribute if they are long enough to reach a new page in the following

“down” subphase. Generally, the part of the window in the “down” subphase must be longer than the part
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in the “up” subphase. So only those windows starting at posiiionkere

(-1
2h—D+1<t & izh— =

can possibly contribute 1 to the difference. On the other hand, a window that starts in the “up” subphase
and extends further than positioh 2 2 (the end of the “down” subphase) cannot contribute a 1. So it
must also hold that

i+(l-1)<2h-2 & i<2h—(-1

If ¢isodd, there ar@h—¢—1)— (h—51)+1 = h— L = h—[5] = h—| 5| -1 windows contributing
al. Notethat fof even,lmustbeatleaézt—— smcez € N.Thus,therear&h—¢—1)— (h— 2y 41 =
h—%—1=h—|%]|— 1 contributing windows. O

Now, we are ready to calculate A(Y).

Lemma 6.
_ 12
- 1<0<2h—3, €odd,
() 1
Av = — —
h —w, 2< € <2h -3, Leven,
4h — 1)
, ¢>2h -2,

andAv;°(¢) is concave*.

Proof. The equality follows from Lemm& and simple calculations. Ford ¢ < 2h — 3,
-1
AV (D) = AR + Y ARG+ 1) — AR ()
i=1

1+§(1—h—fd%J)

(¢—3)/2 5
1 E—l
22 _ ! ) ¢ odd,
1
- _h—l ¢/2-1 5_12
ZZ L 2 even.

For¢ > 2h — 2, each window of lengtl contains alh pages and therefore, A(¢) = h.
For the concaveproperty, itis obvious that AV (1) = 1and Ay°(£+1) —Avy°(¢) = O, fore > 2h 2.
It remains only to check that

Vee{2,....,2h =2 0<AVCL+ 1) — AP () <AV (D) — AV (L — 1) <
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This is easily done using LemntaFor 2< ¢ < 2h — 3,

1 e 1 e-1
AU+ AR =1— — || <1 = |E2=
Vi (b4 D) = A7) h—dzj h—lLZJ

=AV (L) — AV (L — ).
Moreover,
AV (2 —AvP () =1
and

AP (2h—2) —AV(2h —3) = 1— ——— _ S
b ) A ) 2 h—1 1

h—1

1 |26-3]_, h-2_ 1
= —
> AR(h—1) ~AV2h—2)=0. O

Lemma 7. Let

£ = min{¢, Avi°(0) + e}, 1<€<2h—3,
| A, £>2h—2,

wheree = -/ Then Upbown is consistent with,fand f is concave

Proof. To prove thatipDown ;' is consistent with, we must show that A¥) < f(€), 1 < € < 2(h — D)n.
Obviously, fore > 2h — 2, f(¢) = his a tight upper bound on A¥). For 1< ¢ < 2h — 3, we utilize the
results of Lemmd. For the windows starting in one of the first- 1 phases obpbown 7, the average
number of distinct pages in a window of lengtlrs Av;°(¢). The sum of the number of distinct pages in
all windows of lengtt? contained in the lastpDow , phase is at most(@ — 1)h. Thus,

2(h — 1)(n — DAV (L) + 2(h — 1)k

AV < n2h—1)—€¢+1
2h — Dn — DAV + 20— Dh h
S 2 —D(n — 1) A O+

It follows easily from Lemm& thatf is concavé. O

Theorem 13. There are Marking strategie$f*, including FWF and aconcave* function f such that
a  fk)

Fae(f) 2 3k+§,k k fk)
k+2-1/k &k

if kiseven,

if kisodd.




168 S. Albers et al. / Journal of Computer and System Sciences 70 (2005) 145-175

Proof. Consider the sequenee = UpDown}, ,, Wheren > 0 is a (large) integer, and the marking
algorithm M* that uses the last in first out (LIFO) strategy when evicting an unmarked page. Note that
M will fault on every request in the sequence. Thiigs (6) = 1. The same is true about FWF.

Letf be defined as in Lemmawith & = k + 1. By Lemma, ¢ is consistent with, andf is concavé.
Fork > 3, clearly, there exists am € N such thatf (k) = Avi3 (k) + fli_i forn > ng. Thus, fork > 3
andn > ng, we can write the page fault rate in the following way:

k  fk) k S (k)
MO=1=50" 0 T+ Bk
4k f (k)
: kodd
12 1krat kO
- 4k f (k)

. keven. O
3k+2+451 &k

6.4. The optimal offline algorithm
In this section, we will give an upper bound on the fault rate of LFD of approxim _’,? %
Recall that for any concavdunctionf, M denotes the maximum value bfe will also prove that there
exists a concavefunction for which the bound is tight.
For the analysis of the upper bound, we will partition the sequences into ppases . . ., P, defined
in the following way. The phasg; starts with the first request in the sequence, and ¥ X n, phase
P; starts with the first fault on a page that was evicted in pliase. Lets; denote the index of the first
request inp;.
Similarly to the previous upper bound proofs, we give a lower bound;on. Like in the case of LRU
and FIFO, no window of length+ 1 contains two faults on the same page. Hence, each fault contributes
k+ 1to N;41. Lemma8 below can be used to give a lower bound on the contribution from free requests.
The idea behind the proof of Lemn&4s the following. For each free requestonsidered, we count
the windows containing. To ensure that nothing is counted twice, we consider only those windows that
do not contain a fault on the pageequested by. Furthermore, if a window contains two free requests
to p contained in two distinct phases, the window is only counted in the first of the two phases.

Lemma 8. For any free request r to some pagel@gt W(r) be the number of windows of length+ 1
containing r but no fault on p and no free request to p that occurs to the left of . In each phase
2 <i <n—2,there are at least — 1 free requestsy, o, ..., ry_1 to k — 1 distinct pages such that

3 3
323 Kodd

k-1
Z W(rj) =W whereW =
=t 3k>—1 keven

Proof. Let p be the first page requested in phdse;. By the definition of a phase,is evicted at some
point during phase;. Assume that this happens as a result of the reaiie$tfor some indexg. By the
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P1 e Pr-1 p

q S+1

Fig. 7.0[q]: cause9 to be evictedo[s;+1]: first fault onp aftero[q]—phaseP; ;1 begins.

P P

dj

Fig. 8. o[h'j]: lastrequest top; befores[q]. a[h;]i firstrequest tp; afterafq].

definition of LFD and the fact thattis evicted, each of the— 1 other pages, . .., px—1 in fast memory
are requested at some point betwegy] andas[s; 1] (see Fig.7).

Each of these requests must be free. This can be seen in the following way. Assusiig that ¢, is a
faultonp;, 1< j < k—1.Then,p; must have been evicted at some point betwdeghands(z]. Hence,
by the definition of a phase > s; 1. In other words, there are no faults on any of the pages. ., px—1
aftero[g] in phasep;.

Forl1< j <k—1,letr; bethefirstrequest tp; afters[q]. By the definition of LFD, none of the first
k requests after; is a fault onp;. Thus, when calculating/(r;), only requests to the left of; can be
problematic. Leh'j be the largest index smaller thgrsuch tha’ro-[h'j] is a request tg ;. Furthermore,

let 2, be the index of ; and letd; = h', — h'j (see Fig8). Then, W (r;) = minfk + 1,d;}.
Now, Ietd} =q— h'J andd! = h', — g and note that

k—1 k-1 k—1 k-1 k-1
Yodjp = Ydi+dy = Y di+ Y dl =23
=t j=1 =1 j=1 j=1

Let Rbe the set of requests such thaid; < k + 1, and letm = |R|. Then,
k—1
YW = k—1-mk+D+ Y d
j=1 rj€R

m
> —1-mk+1D+2) j =k —1+m?—km.
j=1

This lower bound on{j’;j W (r;) is minimized whenn = &, if kis even, and whem = 1, if kis
odd. Inserting these values wfin the lower bound, the inequality of the lemma is obtained.
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Theorem 14. The fault rate of LFD is

AM—k)  fk+1)

A4M —k — 3 k+1
Firp(f) < 4M — k) [+

1
AM —k—3- 2 k+1

k odd

k even

Proof. Consider any request sequeransistent with. Since no window of length + 1 contains more
than one fault on the same page, each fault contributed to Ny+1. Lemma8 provides a lower bound
on the contribution from the free requests of each phase.

Within a phase there is at most one fault on each page, arldghges that are in fast memory at the
beginning of a phase do not cause a fault within the phase. Thus, each phase containsiat-miost
faults. LetF; be the number of faults in phag®, letW be defined as in Lemn and IetN,iJrl be the
contribution toN1 from the requests i®;. Then

Niw  G+DF+W _ k+DM—k)+W
Fo F; - M —k '

Solving for F; yields

F < M~k N
S hk+DM—k)+w kL

and

2

LFD(U) = Fi =
i=1 i
M —k

— - N, '
k+DM —f 1w ke

-2
M —k —
Fi+c < D Nijg+e
=2

(]

(k+1D(M —k)+W

Il
N

wherec andc¢’ are constants, i.e., independentgf Thus,

Firo(e) < —— Mk+ 1)+ &
o) < . JE—
HFP k+DM—k)+ W o]
M —k c

~fk+1)+

S k+1DH(M —k)+W lo]

Now, the theorem follows by using thgt? — 3 = 2(k — 1)(k + 1):

M —k c

F < kD) +—

o) S M —p+ik—va+n TV
4M — k) f(k+1)+c_ % odd

T AM—k—-3 k+1 ' |q
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and

Mk f@+n+i
(k+ DM —k) + 3k =Dk +1) — o]

4M —k) fk+1) ¢

= +— keven U
1
UM —k—-3—7 k+1 ol

Firp(o) <

Theorem 15. There exists a concavéunction f such that

AM—k  fk+D)

k odd
AM —k—3  k+
Firp(f) = AM — k) f(k+1)
. k even
AM —k—-3—- 1 k+1

k+1

Proof. Consider the functiori given in Lemma7. For £ > 3, Avj/(£) < £. Hence, fork > 2 andn
sufficiently large, inserting = M vyields,

fk+1)=k+1 -1 + M
- 4AM-1 n-1
_(4M —k—3+e)k+1) ¢ odd
AM —1)
and
k2 M

flk+D)=k+1-

aM—1 n-1
M —k-3- g+ ek + D
B AM — 1)

k even,

wheres = %% The sequencepbown , is consistent witli andf is concavé. Itis easy to verify

that, in each “up” and each “down” subphase, LFD faults on the first request and thé last — 1
requests . Thus,

M-k fk+1)
M—-1 fk+1)

FLrp(UpDow ;) >

4M —k) flk+1)

AM —k —3+¢ k+1
= AM — k) Cfk+ 1)

1

k odd,

k even. O
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Fig. 9. Maximum and average size of the working set in windows of size up t®@00Gequests. Each diagram’s caption gives
the architecture, the name of the trace, and the number of distinct pages requested in the entire sequence.

7. Experiments

In this section, we present some results of our experimental study in which we compared the worst
case fault rates developed in the previous sections to the fault rates observed on real processor traces. W
analyzed memory reference traces from the New Mexico State University Trac¢1Batigat contains
standard benchmarks. We selected traces from VAX and SPARC platforms. More specifically, we chose
the ATUM VAX traces and a bundle of SPARC traces that were collected while running the SPEC92
benchmark suite. The sets consist of a collection of 9, respectively, 13 memory reference traces from
single processes. The request sequences contain both data read/write requests and instruction fetche
The SPARC traces were truncated after 10 million references, whereas the VAX traces vary in length, but
are all about 40@00 requests. We worked with a page size of 512 bytes for the VAX architecture and a
page size of 2048 bytes for the SPARC architecture.

We first analyzed the maximum and average working set size in windows of up 100D0@quests.

Fig. 9 presents the results for four specific traces, two VAX traces and two SPARC traces. As illustrated
by the figure, the behavior of the working set size proposed by Denning for a single window of increasing
size can also be observgtbbally, taking the maximum/average working set size aiewindows of

a request sequence; the curves have an overall concave behavior. Only in the Max-Model, some minor
adjustments are necessary to obtain a corfclurection. We also observe that, for all window sizes, the
working set size is very small.
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Fig. 10. Measured fault rates and upper bounds on the fault rates for FIFO and LRU. The fast meniovaséezein the range
of 1 up to the total number of distinct pages requested in the entire sequence.
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In the second part of the experiments, we evaluated the fault rates of LRU, FIFO, and LFD on the
various traces and compared the values to the corresponding bounds we developed for both the Max-
and the Average-Model. We performed the comparison for cache sizes ranging from 1 to the maximum
working set size. FigsOand11 present the results for the VAX Pascal and the SPARC Compress traces.
Fig. 10 shows the results for LRU and FIFO. In each plot, the two lower curves represent the empirical
fault rates of LRU and FIFO, while the two curves in the middle show the corresponding theoretical upper
bounds in the Max-Maodel. The upper curve depicts the bound in the Average-Model1Eows the
bounds for LFD in the same relative order.

Since the fault rate as defined in Definiti@ns a worst-case measure, we cannot expect that the
theoretical bounds on the fault rates match the empirical values completely. Nevertheless, the gap is not
large andconsiderablysmaller than in the case of competitiveness. On real world traces, the “empirical
competitiveness” of LRU and FIFO is typically no larger than 4. This was observi3j1i8] and also
showed in our experiments. On the other hand, the competitive ratios from theoky Bheis, the
gap between the theoretical and empirical competitivenesgdisin our paging model, the gaps are
considerably smaller. For the VAX PASCAL and SPARC COMPRESS traces for instance the gap is,
expressed as a function linearkpusually betweett /50 tok/30. For some of the traces we examined,
the values were even below/1000. We also remark that the results for the Max-Model are better than
for the Average-Model. We conclude that while the Average-Model is interesting from a mathematical
point of view, the Max-Model more accurately models request sequences that occur in practice.
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