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Abstract

Motivated by the fact that competitive analysis yields too pessimistic results when applied to the paging problem,
there has been considerable research interest in refining competitive analysis and in developing alternative models
for studying online paging.

In this paper, we propose a new, simple model for studying paging with locality of reference. The model is closely
related to Denning’s working set concept and directly reflects the amount of locality that request sequences exhibit.
We use the page fault rate to evaluate the quality of paging algorithms, which is the performance measure used in
practice.

We develop tight or nearly tight bounds on the fault rates achieved by popular paging algorithms such as LRU,
FIFO, deterministic Marking strategies and LFD. These bounds show that LRU is an optimal online algorithm,
whereas FIFO and Marking strategies are not optimal in general. We present an experimental study comparing the
page fault rates proven in our analyses to the page fault rates observed in practice.
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1. Introduction

Pagingis a fundamental and extensively studied problem. Consider a two-level memory system con-
sisting of a small fast memory, that can holdk pages, and a large slow memory. The system must serve
a sequence of requests to memory pages. A request can be served if the page to be accessed is in fast
memory. If a requested page is not in fast memory, apage faultoccurs. The missing page must then
be loaded into fast memory and, simultaneously, a page must be evicted from fast memory in order to
make room for the new page. A paging algorithm decides which page to evict on a fault. This decision
must usually be madeonline, i.e., without knowledge of any future requests. The goal is to minimize the
number of page faults.

Early work on paging analyzed online algorithms assuming that request sequences are generated
by probability distributions, see e.g.,[10]. Sleator and Tarjan[15] introduced competitive analysis and
showed that the paging strategies least-recently-used (LRU) and first-in-first-out (FIFO) achieve an op-
timal competitive ratio ofk. An online algorithmA is c-competitive if, for all request sequences, the
number of page faults incurred byA is at mostc times the number of faults incurred by an optimal offline
algorithm. Practitioners criticized these results because, in practice, LRU and FIFO achieve performance
ratios that are much smaller thank. An experimental study presented byYoung[18] shows ratios between
1, 2 and 3. It is also known that LRU outperforms FIFO and general deterministic Marking strategies,
such as flush-when-full (FWF ), which are alsok-competitive[17]. Thus, competitive analysis does not
properly discern between the behavior of different algorithms. The flaw of competitive analysis is that it
considers arbitrary request sequences, whereas, in practice, request sequences have some structure, i.e.,
they exhibitlocality of reference.

For this reason there has been considerable research interest in refining competitive analysis and
developing alternative models for studying online paging.Young[18] and Borodin et al.[2] initiated this
line of research. Young[18] defined the notion ofloose competitiveness, where paging algorithms are
evaluated for varying fast memory sizes, ignoring input sequences that give a high competitive ratio for
only a few sizes of the fast memory as well as sequences giving a low fault rate for most sizes of the
fast memory. Borodin et al.[2] introduced the concept ofaccess graphsto model locality of reference.
In an access graphG, each node represents a memory page. A request sequence is consistent withG if
a request to a pagep is followed by a request to a page that is adjacent top in the graph. Access graphs
were also studied in a number of subsequent papers[4,8,9,11]. It was shown that paging algorithms
taking the underlying access graph into account can outperform standard paging algorithms and that the
competitiveness of LRU is never worse than that of FIFO. Karlin et al.[12] modeled locality of reference
by assuming that request sequences are generated by aMarkov chain. They analyzed the page fault rate
of paging algorithms and developed an algorithm that achieves an optimal fault rate, for any Markov
chain. Torng[17] analyzed thetotal access timeof paging algorithms. He assumes that the service of
a request to a page in fast memory costs 1, whereas a fault incurs a penalty ofp, p > 1. In his model
a request sequence exhibits locality of reference for working sets of sizem if the average length of a
maximal subsequence containing requests tom distinct pages is much larger thanm. Note that there is
some similarity withf −1 defined in Section5. Koutsoupias and Papadimitriou[13] proposed thediffuse
adversarymodel for studying general online algorithms. In this model a request sequence is generated by
a probability distributionD that is chosen from a class� of distributions known to the online algorithm.
Koutsoupias and Papadimitriou also introduced acomparative analysiswhich compares the performance
of algorithms from given classes of algorithms.
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Fig. 1. Working set size as a function of the window size.

In this paper, we propose a new model for studying paging with locality of reference.

• The model is very simple and closely related to Denning’s working set model[6]. It directly reflects
the amount of locality exhibited by request sequences. We restrict the class of request sequences from
which an adversary may choose a sequence but make no probabilistic assumptions regarding the input.

• We evaluate paging algorithms in terms of their fault rate, the performance measure used by practi-
tioners. We give tight or nearly tight bounds on the fault rates achieved by LRU, FIFO, deterministic
Marking strategies and longest-forward-distance (LFD). We show that LRU is an optimal online al-
gorithm in our model but that FIFO and marking strategies are not optimal in general.

• We have performed an experimental study with request sequences from standard corpora, comparing
the fault rates proven in our analyses to the fault rates observed in practice. The gap between the
theoretical and observed fault rates is considerably smaller than the corresponding gap in competitive
analysis. This is the first time that the theoretical bounds developed in an alternative paging model are
compared to the performance observed in practice.

2. The model

In modeling locality of reference we go back to the working set concept by Denning[6,7] that is
also used in standard text books on operating systems[5,16] to describe the phenomenon of locality. In
practice, during any phase of execution, a process references only a relatively small fraction of its pages.
The set of pages that a process is currently using is called theworking set. Determining the working set
size in a window of sizen at any point in a request sequence, one obtains, for variablen, a function whose
general behavior is depicted in Fig.1. The function is increasing and concave. Denning[6] shows that this
is in fact a mathematical consequence of the working set model, assuming statistical regularities locally
in a request sequence.

Inspired by this simple and natural model we devise two ways of modeling locality of reference. In
both models, we assume that an application is characterized by a concave functionf; the application
generates request sequences that areconsistent with f. In theMax-Modela request sequence is consistent
with f if the maximum number of distinct pages referenced in a window of sizen is at mostf (n), for any
n ∈ N. In theAverage-Modela request sequence is consistent withf if the average number of distinct
pages referenced in a window of sizen is at mostf (n), for anyn ∈ N.
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In our model the functionf characterizes the maximum/average working set size globally in a request
sequence, whereas the original working set model considers working set sizes locally. The Max-Model is
closely related to the original working set model. On the other hand, the Average-Model permits a larger
class of request sequences. It is interesting if an application changes the working set completely at certain
times in a request sequence.

We performed extensive experiments with traces from standard corpora, analyzing maximum/average
working set sizes in windows of sizen, see Section7 for details. In all of the cases, the functions have an
overall concave shape. Even in very large windows, the number of distinct pages referenced is very small.
This demonstrates that the model we propose here is indeed reasonable for studying paging algorithms.

What properties do relevant functionsf have, apart from being increasing and concave? Since windows
of size 1 contain exactly one page,f (1) = 1. If windows of sizencontain at mostmpages, then a window
of sizen + 1 can contain at mostm + 1 pages. Thus, in the Max-Model,f is surjectiveon the integers
between 1 and its maximum value, i.e., for all natural numbersm between 1 and sup{f (n) | n ∈ N},
there exists ann with f (n) = m.

For a given application, a good approximation off is easy to determine. One only has to scan a
sufficiently long request sequence and compute the maximum/average number of pages in windows of
sizen. A function obtained by analyzing real data might not be concave in all intervals. However, this is
no problem. Essentially, we can use any concave functionf that is an upper bound on the observed data
points, e.g., we can take the upper convex hull of the points. We only need thatf (n) is an upper bound
on the maximum/average number of pages in windows of sizen, andf (n) need not even be integral for
all n. Therefore, we will work with general functionsf : N → R+, which will allow us to state concavity
in a simple way.

Definition 1. A functionf : N → R+ is concave∗ if
(i) f (1) = 1 and

(ii) ∀n ∈ N: f (n + 1) − f (n) � f (n + 2) − f (n + 1) � 0.
In the Max-Model we additionally require thatf be surjective on the integers between 1 and its maximum
value.

Both in the Max- and in the Average-Model, given a concave∗ function f, we will analyze the per-
formance of paging algorithms on request sequences that are consistent withf. Practitioners use the
fault rate to evaluate the performance of paging algorithms. We will use this measure, too. For a paging
algorithmA and a request sequence�, let A(�) be the number of page faults incurred byA on� and let
|�| be the length of�. The fault rate ofA on� is FA(�) = A(�)/|�|. We are interested in the worst case
performance on all sequences that are consistent withf.

Definition 2. The fault rate of a paging algorithmA with respect to a concave∗ functionf is

FA(f ) := inf {r | ∃n ∈ N: ∀�, � consistent withf , |�| � n:FA(�) � r}.
Throughout the paper, we will assume that the functions considered are concave∗. Moreover, we assume

that the functions have maximum values of at leastk + 1, since otherwise the fault rate of any reasonable
paging algorithm is 0.
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3. Algorithms

We briefly describe the algorithms analyzed in this paper.

• LRU (Least-Recently-Used): on a fault, evict the page whose most recent request was earliest.
• FIFO (First-In-First-Out): on a fault, evict the page that has been in fast memory longest.
• Deterministic Marking algorithms: a request sequence is processed in phases. At the beginning of a

phase, all pages are unmarked. Whenever a page is requested, it is marked. On a fault, an arbitrary
unmarked page is evicted from fast memory. A phase ends immediately before a fault when there are
k marked pages in fast memory. LRU is a marking algorithm.

• FWF (Flush-When-Full): FWF is a very primitive marking algorithm which, at the end of each phase,
evicts all pages in fast memory.

• LFD (Longest-Forward-Distance): evict the page whose next request is farthest in the future.

LFD, in contrast to the online algorithms mentioned above, is an offline algorithm that cannot be applied
in practice. However, since LFD is an optimal offline algorithm—on any request sequence it achieves the
minimum number of page faults[1]—it is interesting to analyze its fault rate.

4. Results

Both for the Max- and the Average-Model we develop tight or nearly tight bounds on the fault rates
achieved by popular paging algorithms such as LRU, FIFO, deterministic Marking strategies and LFD.The
results are summarized in Table1. M denotes the maximum number of distinct pages that can be requested
in any sequence consistent withf, andf −1 is the inverse function off, formally defined in Section5. For
the Average-Model, we state only approximate fault rates for the class of marking algorithms, FWF, and
LFD. The exact (and more complicated) values can be found in the text in this section and in Sections
6.3and6.4. Though it does not appear from the table, these bounds are actually tight.

In Section5, we investigate the Max-Model. We prove a general lower bound ofk−1
f −1(k+1)−2

on the
fault rate of deterministic online paging algorithms, and prove that the fault rate of LRU exactly matches
this lower bound. Hence, LRU is an optimal deterministic online algorithm in the Max-Model.

LRU is a special Marking strategy. We show, however, that general deterministic Marking strategies
are not as good as LRU. We prove a lower bound of k

f −1(k+1)−1
on the fault rate of a class of Marking

algorithms that includes FWF.We further prove that this class is worst possible among Marking algorithms,
i.e., we prove an upper bound on the fault rate of any Marking algorithm matching this lower bound.

For FIFO, we prove a lower bound of k−1/k
f −1(k+1)−1

and an almost matching upper bound of k
f −1(k+1)−1

.
The gap between the lower bound for FIFO and the fault rate of LRU is small. However, in our experiments
the difference in the fault rates observed for LRU and FIFO is also small, see Section7.

We finally study LFD and show that its fault rate depends on the total numberM of pages that may be
requested. We show that LFD has a fault rate of at least max{ m

f −1(k+m)−1
}, where the maximum is taken

over all positive integersm with m + k � M. We prove an upper bound that is about a factor of 2 away
from this lower bound.

In Section6, we study the Average-Model. We prove that every deterministic online paging algorithm
has a fault rate of at leastf (k+1)−1

k
.
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Table 1
Fault rates of all algorithms considered in this work

Max-Model Average-Model

Online � k−1
f −1(k+1)−2

� f (k+1)−1
k

LRU = k−1
f −1(k+1)−2

= f (k+1)−1
k

FIFO � k−1/k
f −1(k+1)−1

, � k
f −1(k+1)−1

= f (k+1)−1
k

Marking � k
f −1(k+1)−1

� 4
3
f (k)
k

FWF = k
f −1(k+1)−1

≈ 4
3
f (k)
k

LFD � max
m∈N

k+m � M

{
m

f −1(k+m+1)−2

}
, � 2 max

1 � m � k
k+m � M

{
m+1

f −1(k+m)

}
≈ 4(M−k)

4M−k
f (k+1)
k+1

In the Average-Model, both LRU and FIFO are optimal, i.e., they achieve a fault rate equal to the lower
bound. On the other hand, there are Marking strategies that are considerably worse. We identify a class
of Marking algorithms including FWF and concave∗ functions for which the fault rate is approximately
4
3
f (k)
k

. If k is even, the exact fault rate is4k3k+2
f (k)
k

. If k is odd, then there is an additive−1/k in the
denominator of the first term. We prove that this is the worst possible fault rate for Marking algorithms.

We also develop tight bounds for LFD. The fault rate depends again on the total numberM of pages
that may be requested. Ifk is odd, then the exact fault rate is4M−4k

4M−k−3
f (k+1)
k+1 . If k is even, there is an

additive−1/(k +1) in the denominator of the first term. IfM is approximatelyk, LFD has page fault rate
close to 0, as expected. IfM is large compared tok, the fault rate is close tof (k+1)

k+1 .
In Section7, we present the experimental study mentioned already a few times in this text. We first

demonstrate that our models for quantifying locality is indeed reasonable from a practical point of view
and then compare the fault rates developed in our models to the fault rates observed in practice.

For the Max-Model, the results are quite good. The gap between the theoretical and observed bounds
is considerably smaller than the corresponding gap in competitive analysis, unless the size of the fast
memory is extremely small. As the size of the fast memory increases, the gap decreases and is very small
for large fast memories.

For the Average-Model, the results are not as good. Here, we still have a considerable gap between the
theoretical and observed fault rates. Our explanation for this phenomenon is as follows. The Average-
Model permits a larger class of request sequences than the Max-Model. This larger class may contain
request sequences that cause high fault rates in the mathematical analyses but typically do not occur in
practice. We conclude that while the Average-Model is interesting from a mathematical point of view, the
Max-Model seems to model more accurately the request sequences that occur in practice.

5. Paging in the Max-Model

We first study the Max-Model. Given a concave∗ functionf, f (n) is an upper bound on the maximum
number of distinct pages encountered in anyn consecutive requests of a request sequence. In this section,
we will assume thatf (2) = 2, becausef (2) < 2 only permits request sequences referencing a single
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page, and for such sequences the page fault rate of any reasonable algorithm is 0. Furthermore, we consider
only the casek � 2. If k = 1 an adversary can easily cause a fault rate of 1 for any paging algorithm
becausef (2) = 2. For the analyses of the fault rates we need to define the inverse function off. Let
M = sup{�f (n)� | n ∈ N}. Definef −1: {m ∈ N | m � M} → N by

f −1(m) := min{n ∈ N | f (n) � m}.
Thus,f −1(m) is the smallest possible size of a window containingm distinct pages. The following
proposition will be crucial in our analyses.

Proposition 1. f −1 is a strictly increasing function satisfying

f −1(m) − f −1(m − 1) � f −1(m − 1) − f −1(m − 2) for all 3 � m � M.

Proof. We prove the stated inequality. Sincef −1(2)− f −1(1) = 1, this immediately implies thatf −1 is
strictly increasing.

Sincef is surjective on the integers between 1 and its maximum value (Definition1), there exist integers
nm−2, nm−1, andnm such thatf (nm−2) = m − 2, f (nm−1) = m − 1, andf (nm) = m, for 3 � m � M.
Now,

1 = f (nm) − f (nm−1) =
nm−1∑

i=nm−1

(
f (i + 1) − f (i)

)
and

1 = f (nm−1) − f (nm−2) =
nm−1−1∑
i=nm−2

(
f (i + 1) − f (i)

)
.

Sincef is concave (Definition1 (ii)), each term in the second sum is at least as large as each term in the
first sum, so the first sum must have at least as many terms as the second one. Therefore,

f −1(m) − f −1(m − 1) = nm − nm−1 � nm−1 − nm−2 = f −1(m − 1) − f −1(m − 2),

proving the proposition. �

We first develop a lower bound on the fault rate that can be achieved by any deterministic online paging
algorithm and then show that LRU is optimal.

Theorem 1. LetA be any deterministic online paging algorithm. Then

FA(f ) �
k − 1

f −1(k + 1) − 2
.



152 S. Albers et al. / Journal of Computer and System Sciences 70 (2005) 145–175

Proof. We construct a family of request sequences�n, where the lengthn of a sequence can be made
arbitrarily large, such thatA’s fault rate on any of the sequences is at least the desired bound. We need
k+1 distinct pagesp1, . . . , pk+1.A request sequence is constructed inphases, each of which has a length
of f −1(k + 1)− 2 and is composed ofk − 1 blocks. A block is a subsequence of requests, all to the page
that was not inA’s fast memory at the end of the previous block. Thus,A has a cost of 1 in each block and
a cost ofk − 1 in each phase. In each phase, blockj, 1 � j � k − 1, starts with requestf −1(j + 1) − 1.
Note that the partitioning of the phases into blocks is well-defined, sincef (2) = 2. Thus, the first block
of a phase starts with the first request of the phase. Within a phase, blockj, 1 � j � k − 1, has a length
of (f −1(j + 2)− 1)− (f −1(j + 1)− 1) = f −1(j + 2)− f −1(j + 1). By Proposition1, f −1 is strictly
increasing. Thus, the blocks are non-empty and the constructed sequence is well-defined. Also, within a
phase the block lengths are non-decreasing.

It remains to show that the request sequence is consistent withf. To this end it suffices to show that
any subsequence withj distinct pages has a length of at leastf −1(j). For 1� j � 2, there is nothing to
show becausef −1(j) = j in this case. The most interesting range ofj is 3� j � k. Any subsequence
with j distinct pages must (partially) cover at leastj consecutive blocks. Since the blocks are homogenous
with respect to the requested page, a subsequence of minimal length withj distinct pages only contains
the last request of the first block partially covered and, analogously, only the first request of the last
block partially covered. Extending the subsequence further into the first or last block, we do not gain any
additional pages but only increase the length of the subsequence. As stated above, the block lengths in a
phase are non-decreasing. Thus, a subsequence withj distinct pages of minimal length fully covers the
first j − 2 blocks of a phase and includes the last request of the previous phase as well as the first request
of block j − 1. The length is(f −1(j) − 1) + 1 = f −1(j).

We finally have to considerj = k + 1. A subsequence withk + 1 distinct pages must partially include
at leastk + 1 blocks and has a length of at least

(
f −1(k + 1) − 2

) + 2 = f −1(k + 1). �

Theorem 2. The fault rate of LRU isFLRU(f ) �
k − 1

f −1(k + 1) − 2
.

Proof. Let � be an arbitrary request sequence consistent withf. We partition the request sequence into
phases such that each phase contains exactlyk − 1 faults made by LRU (except for possibly the last
phase) and starts with a fault. In general, theith phase,i � 2, starts with the((i − 1)(k − 1) + 1)st fault
and ends immediately before the(i(k − 1) + 1)st fault. The last phase might be incomplete. LRU incurs
a cost of at mostk − 1 per phase. We show that each phase, except for possibly the first and the last one,
has a length of at leastf −1(k + 1) − 2. Consider an arbitrary phaseP different from the first and the
last phase. We argue that the subsequence of� starting at the last request beforeP and ending at the first
request afterP (including that request) containsk + 1 distinct pages. This implies thatP has a length of
at leastf −1(k + 1) − 2. Letx be the page referenced by the last request beforeP. PhaseP and the first
request afterP includek page faults. If these page faults are on distinct pages different fromx, then we
are done. If one of the faults is onx, thenx must have been evicted inP at some fault to a pagey. At that
time x was the least recently requested page in fast memory and hence we have identifiedk + 1 distinct
pages in our subsequence. The same argument applies to the case that LRU faults twice on requests to
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some pagez, z �= x. To conclude,� consists of at most

1 +
⌈ |�| − �

f −1(k + 1) − 2

⌉
�

|�|
f −1(k + 1) − 2

+ 2

phases, where� denotes the length of the first phase. In each phase LRU has at mostk − 1 faults. Thus,
the fault rate on� is bounded by

k − 1

f −1(k + 1) − 2
+ 2k − 2

|�| ,

where the last term gets arbitrarily small for increasing|�|. �

LRU is a special Marking strategy. We show, however, that Marking algorithms, in general, are not as
good as LRU, i.e., there is a class of Marking algorithms including FWF that have a higher fault rate. In
the following, we first give an upper bound and then provide a matching lower bound.

Theorem 3. The fault rate of any Marking algorithmM is

FM(f ) �
k

f −1(k + 1) − 1
.

Proof. A Marking algorithmM partitions a request sequence� into phases consisting of requests tok
distinct pages (except for possibly the last one) such that it incurs a fault on the first request of each phase.
Any subsequence that starts at the beginning of the phase and ends immediately after the first request of
the next phase has lengthf −1(k +1) because thek pages requested in the phase are all different from the
first page requested in the next phase. Thus, all but the last phase have a length of at leastf −1(k + 1)− 1
each. The request sequence consists of at most⌈ |�|

f −1(k + 1) − 1

⌉
�

|�|
f −1(k + 1) − 1

+ 1

phases, each causing at mostk faults. Thus, the fault rate on� is bounded by

k

|�|
( |�|
f −1(k + 1) − 1

+ 1

)
�

k

f −1(k + 1) − 1
+ k

|�| . �

The next theorem implies that the upper bound of Theorem3 cannot be improved, in general.

Theorem 4. There are Marking strategiesM∗, including FWF, whose fault rates are

FM∗(f ) �
k

f −1(k + 1) − 1
.

Proof. We simultaneously describe the family of request sequences�n and the behavior of the Marking
algorithmsM∗. As usual we need a set ofk + 1 pagesp1, . . . , pk+1. A request sequence consists of the
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phasesconstructed by the given Marking algorithm. Each phase is composed ofk blocks, where a block is
a subsequence of requests to the same page. Within a phase, blockj has a length off −1(j +1)−f −1(j),
for 1 � j � k. Proposition1 ensures that the block lengths are well-defined, i.e., they are non-zero, and
non-decreasing in a phase. The total length of a phase isf −1(k + 1) − 1.

In the first phase, thejth block consists of requests topj , 1 � j � k. Suppose that we have already
constructedi phases such that each phase contains exactlyk distinct pages. We show how to construct the
(i + 1)st phase. The first block of phasei + 1 consists off −1(2)−f −1(1) = 2− 1 request to the unique
page that was unmarked at the end of phasei. The Marking algorithmM∗ has a fault on this request. We
assume thatM∗ evicts the page that was requested in the last block of phasei. Note that this is the case
for FWF. Each of the nextk − 1 blocks of the phase references the page that is not in the fast memory
of M∗ at the beginning of that block. Thus,M∗ has a total ofk faults in a phase, which gives the desired
fault rate. The pages requested in thek blocks of a phase are distinct. By construction, the page requested
in the second block of a phase is equal to the page requested in the last block of the previous phase.

It remains to prove that the request sequence is consistent withf. We show that any subsequence with
j distinct pages has a length of at leastf −1(j), 1 � j � k + 1. Forj ∈ {1,2}, there is nothing to show
becausef −1(j) = j for these two values. For anyj with 3 � j � k + 1, a subsequence withj distinct
pages must partially cover at leastj consecutive blocks because blocks are homogenous with respect to the
requested page. The block lengths are non-decreasing in a phase. Thus, if 3� j � k, a subsequence with
j distinct pages of minimal length starts at the beginning of a phase and ends after the first request of block
j. The length is exactlyf −1(j). The final casej = k + 1 needs some extra arguments. A subsequence
with k + 1 distinct pages must contain requests from two consecutive phases. If the subsequence fully
covers some phasei, then we are done because a phase has lengthf −1(k + 1) − 1 and one additional
request must be covered. Otherwise the phase partially covers two consecutive phasesi andi + 1. In this
case the subsequence must partially cover at leastk + 2 blocks because the page in thekth block of phase
i is the same as the second block of phasei + 1. Since the length ofk consecutive blocks is exactly equal
to the length of a phase, the subsequence has length at least

(
f −1(k + 1) − 1

) + 1 = f −1(k + 1). �

In the following, we show that FIFO is not an optimal online algorithm in our model. We first develop
a lower bound on FIFO’s fault rate and then present a nearly matching upper bound.

Theorem 5. If f −1(4) − f −1(3) > f −1(3) − f −1(2), then

FFIFO(f ) �
k − 1/k

f −1(k + 1) − 1
.

Straightforward algebraic manipulations show that the fault rate of FIFO given in the last theorem is
in fact larger than that of LRU. The condition onf means that there must be some locality in windows
of size 5, i.e.,f (5) � 4. We can relax the constraint such that there must be some locality in the request
sequence, i.e.,f −1(m)− f −1(m− 1) > f −1(m− 1)− f −1(m− 2) for somem � 3, but then our lower
bound becomes slightly weaker.

Proof ofTheorem5.Letp0, . . . , pk bek+1 distinct pages.We construct a family of request sequences�n.
A request sequence consists of an initial request topk followed by a sequence ofphases, each composed
of k − 1 blocks. The blocks are not homogeneous; each block consists of one request to some pagepi ,



S. Albers et al. / Journal of Computer and System Sciences 70 (2005) 145–175 155

0 � i � k − 1, followed by one or more requests topk, depending on the length of the block. In the
sequence of blocks, the pagesp0, . . . , pk−1 are requested in cyclic order, i.e., in thejth block in the
request sequence the first request is made top(j−1)modk. The block lengths are as follows. In any phase,
the first block has lengthf −1(3)−f −1(2)+1 and thejth block has a length off −1(j +2)−f −1(j +1),
for j = 2, . . . , k − 1. By Proposition1 and the condition onf, the block lengths are non-decreasing, the
first block having a length off −1(3) − f −1(2) + 1 � 3 − 2 + 1 = 2. Thus, each block contains at least
one request topk. The total length of a phase isf −1(k + 1)− f −1(2)+ 1 = f −1(k + 1)− 1. In the rest
of the proof we will argue that the constructed request sequence is indeed consistent withf and that in
anyk consecutive phases, which we call asuper phase, FIFO incurs(k − 1)(k + 1) faults. This gives a
fault rate of

(k − 1)(k + 1)

k(f −1(k + 1) − 1)
= k − 1/k

f −1(k + 1) − 1

as desired.
We first prove consistency withf by arguing that any subsequence withj distinct pages has a

length off −1(j). For j ∈ {1,2} there is nothing to show. Consider aj with 3 � j � k. Any subse-
quence withj distinct pages must span more than a block because a block contains only two distinct
pages. A subsequence of minimal length does not start with a prefix of requests topk because that page
is contained in the next block anyway. Thus, it starts at the beginning of a block and extends at least
beyond the first request of the(j − 2)nd following block. Since block lengths are non-decreasing in a
phase, a subsequence withj distinct pages has a length of at leastf −1(j) + 1 − f −1(2) + 1 = f −1(j).
Finally, a subsequence withk + 1 distinct pages must span more than a phase and hence its length is at
leastf −1(k + 1).

We now analyze the number of faults made by FIFO in a super phase. Assume that the initial fast
memory is empty. FIFO first misses onpk and then onp0, . . . , pk−1, which are requested in the nextk
blocks. Onk consecutive faults, FIFO never misses twice on the same page. Thus, the fault sequence is
pk, p0, . . . , pk−1, which repeats in cyclic order. We show inductively that FIFO misses on the first request
of each block. This clearly holds for the firstk blocks. Suppose that FIFO misses on the first request of
block j, j � k. If pagepi with i < k − 1 is requested, thenpi+1 is evicted, which is referenced in block
j + 1. If pk−1 is requested, thenpk is evicted, which is referenced in the same block. The fault onpk

causes an eviction ofp0, requested in the next block. Our proof also shows that FIFO has two page faults
on any block with a request topk−1. In anyk consecutive phases,k − 1 of these contain such a block.
Thus, in any super phase the total number of page faults isk(k − 1) + k − 1 = (k + 1)(k − 1). �

We complement our lower bound by giving a nearly matching upper bound.

Theorem 6. The fault rate of FIFO isFFIFO(f ) �
k

f −1(k + 1) − 1
.

Proof. On anyk + 1 consecutive faults in a request sequence�, FIFO never faults twice on the same
page. Partition� into phases such that each phase contains exactlyk faults made by FIFO and starts with
a fault. Consider a subsequence that spans one full phase and includes the first request of the next phase.
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The subsequence coversk + 1 faults, i.e.,k + 1 distinct pages. Hence, its length is at leastf −1(k + 1),
and the phase length is only 1 smaller.�

We next give bounds on the fault rate of LFD.

Theorem 7. The fault rate of LFD is

FLFD(f ) � max
m∈N

k+m � M

{
m

f −1(k + m + 1) − 2

}
.

Proof. Fix anm ∈ N andN = k + m pagesp0, . . . , pN−1. We construct a family of request sequences
in phases, where each phase has a length off −1(N + 1) − 2. Each phase is composed ofN − 1 blocks,
thejth block in a phase having a length off −1(j +2)−f −1(j +1), for j = 1, . . . , N −1. In the overall
sequence, the pagesp0, . . . , pN−1 are requested in cyclic order, i.e., thejth block consists of requests
to pagep(j−1)modN , for any positive integerj. The page referenced in the last block of a phase is not
requested in the following phase but resides in LFD’s fast memory at the end of the phase. Thus, among
theN − 1 pages requested in the next phase, onlyk − 1 of these can be in LFD’s fast memory at the
beginning of the phase. Hence, LFD incurs at least(N − 1) − (k − 1) = N − k faults in a phase. This
gives the desired fault rate. As in the proof of the general lower bound, we can show that any subsequence
with j distinct pages has a length of at leastf −1(j), which yields consistency of the constructed request
sequence withf. �

We prove an upper bound on LFD’s fault rate that is essentially a factor of 2 away from the lower
bound. To prove this upper bound we need the following technical proposition.

Proposition 2. For anym1, . . . , mn ∈ N,

n∑
�=1

f −1(m�) � n · f −1 (�m�) wherem = 1

n

n∑
�=1

m�

Proof. Proposition1 implies that

f −1(m) + f −1(m′) � f −1(m + 1) + f −1(m′ − 1) (1)

for all m,m′ ∈ N with m′ − m � 2. We now manipulate the sum
∑n

�=1 f −1(m�) as follows. At any
time we keep a sequence ofn termsf −1(m̃1), . . . , f

−1(m̃n), where the arguments̃m� are natural
numbers. Initially,̃m� = m�, for � = 1, . . . , n. At any time letm = min{m̃� | � = 1, . . . , n} andm′ =
max{m̃� | � = 1, . . . , n}. Whilem′ −m � 2, replace two termsf −1(m) andf −1(m′) byf −1(m+1) and
f −1(m′ − 1). By (1), this cannot increase the total sum of the terms. When the process terminates, each
m̃� is either�m� or �m� + 1. The proposition then follows becausef −1(�m� + 1) � f −1(�m�). �
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Theorem 8. The fault rate of LFD isFLFD(f ) � 2 max
1 � m � k
k+m � M

{
m + 1

f −1(k + m)

}
.

Proof. Partition a given request sequence into phases such that each phase contains exactlyk distinct
pages (except for possibly the last phase) and thek pages are all different from the first page requested
in the next phase. Suppose that the partitioning consists ofp phasesP1, . . . , Pp. For any phasei, let mi

be the number of new pages, i.e., pages referenced in phasei that were not referenced in phasei − 1. We
assume that LFD initially starts with an empty fast memory and setm1 = k. Consider an offline strategy
that performs page swaps without evicting pages that are referenced in the phase. The number of page
faults made by this algorithm in any phasei is mi . Since LFD is an optimal offline algorithm, the total
number of page faults made by LFD cannot be larger and is bounded byk + ∑p

i=2 mi = k + (p − 1)m,
wherem = 1

p−1

∑p
i=2 mi . Any two consecutive phasesi − 1 andi containk +mi distinct pages and thus

have a length of|Pi−1| + |Pi | � f −1(k + mi). The total length of� is

|�| =
p∑

i=1

|Pi | = 1

2

p∑
i=2

(|Pi−1| + |Pi |) + 1

2
(|P1| + |Pp|)

>
1

2

p∑
i=2

f −1(k + mi).

By Proposition2, |�| > 1
2(p − 1)f −1(k + �m�). LFD’s fault rate on� is

FLFD(�) �
k + (p − 1)m

|�| �
2m

f −1(k + �m�) + k

|�| .

The second term in the sum becomes arbitrarily small for increasing|�|. Thus, LFD’s fault rate is

FLFD(f ) � 2 max
1 � m � k
k+m � M

{
m + 1

f −1(k + m)

}
. �

6. Paging in the Average-Model

We now turn to the Average-Model. We need some additional notation. For any sequence� of page
requests,�[i] denotes theith requestr in � as well as the page requested byr, 1 � i � |�|. For 1� i � |�|−
�+1, let��[i] be the window〈�[i], �[i+1], . . . , �[i+�−1]〉. LetN�(i) be the number of distinct pages
in ��[i], and letN� = ∑|�|−�+1

i=1 N�(i) . Let Av(�) be the average number of distinct pages in windows
of length�, i.e., Av(�) = N�|�|−�+1 . Thus, a sequence� consistent with a given concave∗ function f has
Av(�) � f (�), 1 � � � |�|.
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1

∆1

∆2

Fig. 2.A(�), an upper bound on Av(�).

6.1. A tight lower bound for deterministic algorithms

In this section, we will prove a lower bound off (k+1)−1
k

on the fault rate of any deterministic paging
algorithmA with respect to any concave∗ function f. We will build sequences consisting of two parts.
Each sequence has a prefix on whichA faults on each request. To ensure that the sequences are consistent
with f, a suffix consisting of requests to only one page is added.

As a beginning, consider the sequence

�(n,m) = 〈p1, p2, p3, . . . , pk, pk+1〉n〈p1〉m, n � k + 2, m � k + 1

consisting of requests tok + 1 distinct pages. For convenience, we usually omitn andmand refer to the
sequence as�. To determine the minimum lengthmof the suffix ensuring that�(n,m) is consistent with
a given concave∗ function f, we shall need the following upper bound on the average number of distinct
pages in windows of length�, 1 � � � |�|.

Lemma 1. For any�′ � k + 2, let A(�) be defined as

A(�) =
 1 + �1(� − 1), 1 � � � k + 1,

(1 + �1k) + �2(� − (k + 1)), k + 1 � � � �′,
k + 1, � � �′,

�1 = 1 − m − k

(k + 1)n + m
and�2 = (k + 1) − (1 + �1k)

�′ − (k + 1)
(see Fig.2).

If m = qn, for some constantq > 0, there exists ann0 ∈ N such that,

for n � n0,1 � � � |�|, Av(�) � A(�).

Proof. We have

Av(� + 1) − Av(�)= N�+1

(k + 1)n + m − �
− N�

(k + 1)n + m − � + 1

= N�+1 − N� + Av(�)

(k + 1)n + m − �
(2)
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p1 pk+1 pk+1p1 p1

k

m(k+1)n

p1

Fig. 3. When��[r(�)] is extended to��+1[r(�)], p1 is included in the window.

and

N�+1 − N� =
|�|−�∑
i=1

N�+1(i) −
|�|−�+1∑

i=1

N�(i)

=
|�|−�∑
i=1

(
N�+1(i) − N�(i)

)
− N�(|�| − � + 1) . (3)

The rest of the proof is divided into three cases, according to the three linear parts ofA(�). For 1� � �
n(k + 1), we letr(�) = (k + 1)n − � + 1, such that the window��[r(�)] is the rightmost window of
length� completely contained in the prefix〈p1, p2, p3, . . . , pk, pk+1〉n.

Case1 � � � k + 1: Obviously, Av(1) = 1 = A(1). It remains to prove Av(� + 1) − Av(�) � �1, for
1 � � � k. Thus, assume now that 1� � � k. Then no window of size� contains allk + 1 distinct pages.

For 1� i � r(�), N�+1(i) − N�(i) = 1. For i � r(�) + 1, N�+1(i) = N�(i) , since��[i] already
contains the pagep1. The boundary case is depicted in Fig.3.

Thus,
∑|�|−�

i=1

(
N�+1(i) − N�(i)

) = r(�). Since� � k � m, the rightmost window of length� is
completely contained in the suffix, soN�(|�| − � + 1) = 1. Therefore, by (3), N�+1 − N� = r(�) − 1 =
(k + 1)n − �. Now, by (2) and Av(�) � Av(k) � k,

Av(� + 1) − Av(�) �
(k + 1)n − � + k

(k + 1)n − � + m
= 1 − m − k

(k + 1)n − � + m

< 1 − m − k

(k + 1)n + m
= �1.

Casek + 1 � � � �′: It follows from the previous case that Av(k + 1) � 1 + �1k. Thus, it suffices to
show Av(� + 1) − Av(�) � �2, for k + 1 � � � �′ − 1. Observe that for alli, 1 � i � r(�), it holds that
N�(i) = k + 1 = N�+1(i) because� � k + 1. Also for all i > r(�), N�(i) = N�+1(i) becausep1 is
already included inN�(i) . SoN�+1(i) − N�(i) = 0, for 1� i � |�| − �. Thus, by (3), N�+1 − N� =
0 − N�(|�| − � + 1) � − 1. Now, by (2),

Av(� + 1) − Av(�) �
−1 + (k + 1)

(k + 1)n + m − �
�

k

(k + 1)n + m − �′ .

For any fixed�′ andk, Av(� + 1) − Av(�) = O
(1
n

)
, and

�2 = k(m − k)

((k + 1)n + m)(�′ − (k + 1))
= kqn − k2

(k + 1 + q)n(�′ − (k + 1))
= an − b

cn
,

a, b, c = �(1). Thus,�2 = �(1). Therefore, there exists ann0 ∈ N such that Av(� + 1) − Av(�) � �2,
for n � n0.
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Case� � �′: Since there are onlyk + 1 distinct pages, it follows that Av(�) � k + 1, for all �,
1 � � � |�|. �

Now, we are ready to calculate the minimum length of the suffix needed for�to be consistent with a
given concave∗ functionf.

Lemma 2. For any concave∗ function f, there exists ann0 ∈ N such that the sequence�(n,m) is
consistent with f, as long asn � n0 and

m �
k + 1 − f (k + 1)

f (k + 1) − 1
(k + 1) n + k2

f (k + 1) − 1
.

Proof. Assume thatm fulfils the inequality above. LetA(�) be defined as in Lemma1, and let�′ =
f −1(k + 1).

If f (k + 1) � k + 1, thenf (�) � �, 1 � � � k + 1, sincef (1) = 1 andf (�+ 1)−f (�) � f (�+ 2)−
f (� + 1) for all �. In this case, Av(�) � f (�), for all �.

Otherwise,k + 1 − f (k + 1) > 0. Hence,m � qn, whereq > 0 is independent ofn, as required in
Lemma1. Thus, Av(�) � A(�), for all �. Moreover,A(1) = 1 = f (1) andA(f −1(k + 1)) = k + 1.
Thus, sincef is concave, it suffices to prove thatA(k + 1) � f (k + 1). This is done using algebraic
manipulations:

A(k + 1) � f (k + 1) ⇔ k + 1 − k(m − k)

(k + 1)n + m
� f (k + 1)

⇔ m �
k + 1 − f (k + 1)

f (k + 1) − 1
(k + 1) n + k2

f (k + 1) − 1
. �

Lemma 3. Let�′(n,m) be any request sequence consisting of a prefix ofn(k+1) requests to pages from
{p1, . . . , pk+1} and a suffix of m requests to the pagep1.Then for1 � � � n(k+1)+m,Av�′(�) � Av�(�).

Proof. Both sequences have the same length, so it suffices to show that in all corresponding windows the
sequence�′ cannot have more distinct pages than�.

For 1� i � (k + 1)n − k, � hasN�(i) = min{�, k + 1} which is the maximum possible number
of distinct pages for window length�. Hence,�′ cannot have more distinct pages in its corresponding
window.

For(k+1)n−k+1 � i � (k+1)n, observe that thek+1 requests�[(k+1)n−k+1], . . . , �[(k+1)n+1]
are all distinct. Thus,�′

�[i] cannot have more distinct pages in a window starting in this range.
For i � (k + 1)n + 1, �[i] and�′[i] are identical and there is nothing to prove for windows starting

at�[i]. �
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Theorem 9. For any deterministic online paging algorithmA,

FA(f ) �
f (k + 1) − 1

k
.

Proof. Consider a request sequence of length(k +1)n+m with k +1 distinct pages. Since the algorithm
is deterministic and can hold onlyk distinct pages in its fast memory, we can choose the first(k + 1)n
requests such thatA incurs a page fault on every request. The remainingm requests all go to the page
p1. SoA will have a least(k + 1)n page faults. Letm = k+1−f (k+1)

f (k+1)−1 (k + 1) n + k2

f (k+1)−1. Then, by

Lemmas 2 and 3, there exists ann0 and a sequence of request sequences
(
�(n,m)

)
n � n0

consistent with
f and enforcing(k + 1)n page faults when serviced byA. Thus, forn � n0,

FA
(
�(n,m)

)
�

n(k + 1)

|�| = n(k + 1)

n(k + 1) + m

= 1

/(
1 + k + 1 − f (k + 1)

f (k + 1) − 1
+ k2

n(k + 1)(f (k + 1) − 1)

)

= f (k + 1) − 1

k + k2/(n(k + 1))
>

f (k + 1) − 1

k + k/n
. �

6.2. LRU and FIFO

When proving upper bounds in the Average-Model we shift the focus from windows to single requests.
Rather than deriving lower bounds on the length of a window containing a certain number of faults or
distinct pages as in the Max-Model, we derive lower bounds on the contribution from single requests to
N�, for � = k or � = k + 1.

Requests that are not faults are calledfreerequests. To prove that LRU and FIFO are optimal, we show
that each fault contributesk + 1 toNk+1 and, for each free request, there is a further contribution of at
least 1.

Theorem 10. The fault rate of LRU isFLRU(f ) �
f (k + 1) − 1

k
.

Proof. Consider an arbitrary sequence� consistent withf. When a pagep is requested, none of the next
k requests are faults onp. Thus, for each pagep, each fault onp is contained ink + 1 windows of length
k + 1 containing no other faults onp and, for each free request top, there is a window of lengthk + 1
that does not contain a fault onp and whose first request is a request top. Thus, except for the first and
lastk requests, each fault contributesk + 1 toNk+1, and each free request contributes at least 1:

Nk+1 � (k + 1) · LRU(�) + (|�| − LRU(�)
) − c = k · LRU(�) + |�| − c,
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Fig. 4. The windows��[i − � + 1], . . . , ��[i − 1].

wherec < 2k(k + 1) is independent of|�|. Dividing by |�| yields

Av(k + 1) �
k · LRU(�) + |�| − c

|�| = k · FLRU(�) + 1 − c

|�|
and since� is consistent withf,

f (k + 1) � Av(k + 1) � k · FLRU(�) + 1 − c

|�| .

Solving forFLRU(�) yields the desired bound.�

Turning to FIFO, we cannot guarantee that eachfreerequest to a pagep is succeeded byk requests that
are not faults onp. Hence, we need an alternative way to prove that each free request contributes at least
1 toNk+1. To this end we use the following lemma.

Lemma 4. For any request sequence� and any�, 1 � � � |�|, N� is increased by at least1, if a request
is inserted in�.

Proof. Assume that the new requestr is inserted in� just after�[i − 1], for somei, and let�′ denote the
resulting request sequence. For 1� j � i−�,��[j ] = �′

�[j ], and fori � j � |�|−�+1,��[j ] = �′
�[j+1].

Thus, we need only consider the windows��[jmin], . . . , ��[jmax] and�′
�[jmin], . . . , �′

�[jmax + 1], where

jmin = max{i − � + 1,1} and jmax = min{i − 1, |�| − � + 1}
(see Fig.4).

To proveN ′
� � N� + 1 it suffices to prove that

jmax∑
j=jmin

(
N ′

�(j) − N�(j)
) + N ′

�(jmax + 1) � 1. (4)

Let jmin � j � jmax. Then�′
�[j ] contains the requestr and the requests in��−1[j ]. Therefore,N ′

�(j)

andN�(j) can differ by at most 1.
If N ′

�(j) < N�(j), the last page�[j + � − 1] in ��[j ] is different from the page requested byr and all
pages in��−1[j ]. In other words,�′[j + �] is different from all requests in�′

�[j ].
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Let I be the set consisting of the indexi and each of the indicesj + � such thatN ′
�(j) < N�(j),

jmin � j � jmax. We conclude from the previous paragraph that, for each paira, b ∈ I , �′[a] �= �′[b].
Thus,

N ′
�(jmax + 1) � |I | � 1 +

jmax∑
j=jmin

(
N�(j) − N ′

�(j)
)
.

Rearranging, we obtain (4) and the lemma is proven. �

Theorem 11. The fault rate of FIFO isFFIFO(f ) �
f (k + 1) − 1

k
.

Proof. Let � be an arbitrary request sequence consistent withf. Let�′ be the subsequence of� consisting
only of the requests on which FIFO has a fault. Between two faults on a pagep there are faults on at least
k other pages. Thus, no window of lengthk + 1 in �′ contains the same page twice. Therefore,

N ′
k+1 = (k + 1)(|�′| − k) = (k + 1) · FIFO(�) − k(k + 1).

By Lemma4,

Nk+1 � N ′
k+1 + (|�| − FIFO(�)

) = k · FIFO(�) + |�| − k(k + 1).

Now, by the same arguments as in the proof of Theorem10, the desired bound is obtained.�

6.3. Marking algorithms

In this section, we prove an upper bound on the fault rate of any marking algorithm of approximately
4
3
f (k)
k

. Furthermore, we prove that there exists a class of marking algorithms, including FWF, and a
concave∗ function for which the bound is tight.

Theorem 12. For any Marking algorithmM,

FM(f ) �


4k

3k + 2
· f (k)

k
if k is even,

4k

3k + 2 − 1/k
· f (k)

k
if k is odd.

Proof. Consider an arbitrary request sequence� consistent withf. As a beginning, we will prove that
FM(�) � 4

3
f (k)
k

. Analogously to the proof of Theorem10, we will do this by provingNk � 3k
4 M(�) − c,

for some constantc (i.e.,c is independent of the sequence length).
Partition� into phasesP1, P2, …,Pn, such that each phase contains exactlyk distinct pages (except for

possibly the last phase) and thek pages are all different from the first page requested in the next phase.
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j
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k
.
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k
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1

pi
j
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Fig. 6.k even,j � k
2 + 1: pi

j
is contained in at leastk − j + 1 + k

2 windows contributing toNi
k

.

Thek pages requested in phasePi , pi
1, p

i
2, . . . , p

i
k, are numbered according to first appearance, i.e., the

first page requested inPi ispi
1, the first page different frompi

1 ispi
2, and so on. Each page causes at most

one fault in the phase. For each phasePi , let si denote the index of the first request inPi , i.e.,�[si] = pi
1.

For 2� i � n − 2, letNi
k denote

∑si+1−� k
2�

j=si−� k
2�+1

Nk(j) , and note thatNk �
∑n−2

i=2 Ni
k . Note that the

first window contributing toNi
k contains exactly� k

2� − 1 requests from phasePi−1 and the last window
contains exactly� k

2� requests from phasePi+1. If the k distinct pages requested inPi , 2 � i � n − 2,

contribute at least3k
2

4 to Ni
k , thenNk � 3k2

4 (n − 3) = 3k
4 (kn − 3k) � 3k

4 (M(�) − 3k).
Assume first thatk is even. For 1� j � k

2, the first request topi
j is preceded by at leastj − 1 requests

and succeeded by at leastk
2 requests in the phase. Therefore,pi

j is contained in at leastk2 −1+j windows

contributing toNi
k (see Fig.5).

Similarly, for k
2 +1 � j � k, the first request topi

j is succeeded by at leastk−j requests and preceded

by at leastk2 requests in the phase. Therefore,pi
j is contained in at leastk−j+1+ k

2 windows contributing

to Ni
k (see Fig.6). Thus,

Ni
k �

k
2∑

j=1

(
k

2
− 1 + j

)
+

k∑
j= k

2+1

(
3k

2
− j + 1

)
= 3k2

4
.
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Thisproves thatFM(�) � 4
3
f (k)
k

. To prove thatFM(�)� 4k
3k+2

f (k)
k

, it suffices to show thatNi
k � 3k+2

4k k2

= 3k2

4 + k
2, 2 � i � n−2. To do that, note that the first pagepi+1

1 requested in phasePi+1 is not requested
in Pi . Thus,pi+1

1 contributesk2 to Ni
k .

Assume now thatk is odd. For 1� j � k−1
2 , pi

j is contained in at leastk−1
2 + j windows contributing

to Ni
k . For k+1

2 � j � k, pi
j is contained in at leastk − j + 1+ k−1

2 windows contributing toNi
k . Thus,

Ni
k �

k−1
2∑

j=1

(
k − 1

2
+ j

)
+

k∑
j= k+1

2

(
k − j + 1 + k − 1

2

)
= 3k2

4
+ 1

4
.

To prove thatFM(�) � 4k
3k+2− 1

k

f (k)
k

, it suffices to show thatNi
k � 3k+2− 1

k

4k k2 = 3k2

4 + k
2 − 1

4. This

inequality holds, sincepi+1
1 is contained ink−1

2 windows contributing toNi
k . �

For the lower bound, we make use of a sequence consisting ofh distinct pages. LetUpDowN h =
〈p1, p2, . . . , ph−1, ph, ph−1, . . . , p3, p2〉 and let� = UpDowN n

h be the concatenation ofn copies of
UpDowN h. We refer toUpDowN h as a phase of� and subdivide the phases into “up” and “down” subphases,
each of lengthh−1. Define Av∞h (�) to be the average number of distinct pages in windows of length� in
an infinitely long sequenceUpDowN n

h, i.e., forn → ∞. To calculate Av∞h (�) and prove that it is concave∗,
we shall need the following lemma.

Lemma 5. For 1� � � 2h − 3, Av∞
h (� + 1) − Av∞

h (�) = 1 − 1

h − 1

⌊
�

2

⌋
.

Proof. Since the sequence has unbounded length, the average is the same in all itsUpDowN h phases.
Furthermore, averaging over a single “up” or a single “down” subphase gives the same result due to the
symmetry of the sequence. We choose to analyze an “up” subphase.

LetN∞
� , 0 � � � 2h−3, be the sum of the number of distinct requests in allh−1 windows of length�

starting within the considered “up” subphase. In order to prove the lemma, we show

(h − 1)
(
Av∞

h (� + 1) − Av∞
h (�)

) = N∞
�+1 − N∞

� = h − ��/2� − 1.

Case0 � � � h−1: Obviously, the firsth−� windows of length� get a new page when lengthened by
1 position.Also some windows starting towards the end of the “up” subphase contribute a 1 toN∞

�+1−N∞
� .

Precisely, for� odd, the last��/2� windows get a new page and, for� even, there are�/2 − 1 windows
of this kind. Thus,

N∞
�+1 − N∞

� = h − � +
{ ⌊

�
2

⌋
, � odd

�
2 − 1, � even

}
= h −

⌊
�

2

⌋
− 1.

Caseh � � � 2h − 3: Again, we determine the number of windows that contribute 1 to the differ-
enceN∞

�+1 − N∞
� . The first window cannot contribute a 1 because it already coversh distinct pages.

Subsequent windows can only contribute if they are long enough to reach a new page in the following
“down” subphase. Generally, the part of the window in the “down” subphase must be longer than the part
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in the “up” subphase. So only those windows starting at positionsi, where

2(h − i) + 1 � � ⇔ i � h − � − 1

2

can possibly contribute 1 to the difference. On the other hand, a window that starts in the “up” subphase
and extends further than position 2h − 2 (the end of the “down” subphase) cannot contribute a 1. So it
must also hold that

i + (� − 1) � 2h − 2 ⇔ i � 2h − � − 1.

If � is odd, there are(2h−�−1)−(h− �−1
2 )+1 = h− �+1

2 = h−⌈
�
2

⌉ = h−⌊
�
2

⌋−1 windows contributing
a 1. Note that, for�even,i must be at leasth− �−2

2 , sincei ∈ N.Thus, there are(2h−�−1)−(h− �−2
2 )+1 =

h − �
2 − 1 = h − ⌊

�
2

⌋ − 1 contributing windows. �

Now, we are ready to calculate Av∞
h (�).

Lemma 6.

Av∞
h (�) =


� − (� − 1)2

4(h − 1)
, 1 � � � 2h − 3, � odd,

� − (� − 1)2 − 1

4(h − 1)
, 2 � � � 2h − 3, � even,

h, � � 2h − 2,

andAv∞
h (�) is concave∗.

Proof. The equality follows from Lemma5 and simple calculations. For 1� � � 2h − 3,

Av∞
h (�) = Av∞

h (1) +
�−1∑
i=1

Av∞
h (i + 1) − Av∞

h (i)

= 1 +
�−1∑
i=1

(
1 − 1

h − 1

⌊
i

2

⌋)

= � − 1

h − 1


� − 1

2
+ 2

(�−3)/2∑
i=1

i = (� − 1)2

4
� odd,

2
�/2−1∑
i=1

i = (� − 1)2 − 1

4
� even.

For� � 2h − 2, each window of length� contains allh pages and therefore, Av∞
h (�) = h.

For the concave∗ property, it is obvious thatAv∞h (1) = 1 andAv∞h (�+1)−Av∞
h (�) = 0, for� � 2h−2.

It remains only to check that

∀� ∈ {2, . . . ,2h − 2}: 0 � Av∞
h (� + 1) − Av∞

h (�) � Av∞
h (�) − Av∞

h (� − 1) � 1.
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This is easily done using Lemma5. For 2� � � 2h − 3,

Av∞
h (� + 1) − Av∞

h (�)= 1 − 1

h − 1

⌊
�

2

⌋
� 1 − 1

h − 1

⌊
� − 1

2

⌋
=Av∞

h (�) − Av∞
h (� − 1).

Moreover,

Av∞
h (2) − Av∞

h (1) = 1

and

Av∞
h (2h − 2) − Av(2h − 3) = 1 − 1

h − 1

⌊
2h − 3

2

⌋
= 1 − h − 2

h − 1
= 1

h − 1
� Av∞

h (2h − 1) − Av(2h − 2) = 0. �

Lemma 7. Let

f (�) =
{

min{�,Av∞
h (�) + ε}, 1 � � � 2h − 3,

h, � � 2h − 2,

whereε = h
n−1. Then, UpDowN n

h is consistent with f, and f is concave∗.

Proof. To prove thatUpDowN n
h is consistent withf, we must show that Av(�) � f (�), 1 � � � 2(h − 1)n.

Obviously, for� � 2h − 2,f (�) = h is a tight upper bound on Av(�). For 1� � � 2h − 3, we utilize the
results of Lemma6. For the windows starting in one of the firstn − 1 phases ofUpDowN n

h, the average
number of distinct pages in a window of length� is Av∞

h (�). The sum of the number of distinct pages in
all windows of length� contained in the lastUpDowN h phase is at most 2(h − 1)h. Thus,

Av(�) �
2(h − 1)(n − 1)Av∞

h (�) + 2(h − 1)h

n · 2(h − 1) − � + 1

�
2(h − 1)(n − 1)Av∞

h (�) + 2(h − 1)h

2(h − 1)(n − 1)
= Av∞

h (�) + h

n − 1
.

It follows easily from Lemma6 thatf is concave∗ . �

Theorem 13. There are Marking strategiesM∗, including FWF, and aconcave∗ function f such that

FM∗(f ) �


4k

3k + 2
· f (k)

k
if k is even,

4k

3k + 2 − 1/k
· f (k)

k
if k is odd.



168 S. Albers et al. / Journal of Computer and System Sciences 70 (2005) 145–175

Proof. Consider the sequence� = UpDowN n
k+1, wheren > 0 is a (large) integer, and the marking

algorithmM∗ that uses the last in first out (LIFO) strategy when evicting an unmarked page. Note that
M∗ will fault on every request in the sequence. Thus,FM∗(�) = 1. The same is true about FWF.

Let f be defined as in Lemma7 with h = k + 1. By Lemma7, � is consistent withf, andf is concave∗ .
Fork � 3, clearly, there exists ann0 ∈ N such thatf (k) = Av∞

k+1(k) + k+1
n−1, for n � n0. Thus, fork � 3

andn � n0, we can write the page fault rate in the following way:

FM∗(�)= 1 = k

f (k)
· f (k)

k
= k

Av∞
k+1(k) + k+1

n−1

· f (k)

k

=


4k

3k + 2 − 1/k + 4k+1
n−1

· f (k)

k
k odd,

4k

3k + 2 + 4k+1
n−1

· f (k)

k
k even. �

6.4. The optimal offline algorithm

In this section, we will give an upper bound on the fault rate of LFD of approximately4(M−k)
4M−k

f (k+1)
k+1 .

Recall that for any concave∗ functionf, M denotes the maximum value off. We will also prove that there
exists a concave∗ function for which the bound is tight.

For the analysis of the upper bound, we will partition the sequences into phasesP1, P2, . . . , Pn defined
in the following way. The phaseP1 starts with the first request in the sequence, and for 2� i � n, phase
Pi starts with the first fault on a page that was evicted in phasePi−1. Let si denote the index of the first
request inPi .

Similarly to the previous upper bound proofs, we give a lower bound onNk+1. Like in the case of LRU
and FIFO, no window of lengthk +1 contains two faults on the same page. Hence, each fault contributes
k +1 toNk+1. Lemma8 below can be used to give a lower bound on the contribution from free requests.

The idea behind the proof of Lemma8 is the following. For each free requestr considered, we count
the windows containingr. To ensure that nothing is counted twice, we consider only those windows that
do not contain a fault on the pagep requested byr. Furthermore, if a window contains two free requests
to p contained in two distinct phases, the window is only counted in the first of the two phases.

Lemma 8. For any free request r to some page p, let W(r) be the number of windows of lengthk + 1
containing r but no fault on p and no free request to p that occurs to the left of r. In each phasePi ,
2 � i � n − 2, there are at leastk − 1 free requestsr1, r2, . . . , rk−1 to k − 1 distinct pages such that

k−1∑
j=1

W(rj ) � W whereW =
{ 3

4k
2 − 3

4 k odd,

3
4k

2 − 1 k even.

Proof. Let p be the first page requested in phasePi+1. By the definition of a phase,p is evicted at some
point during phasePi . Assume that this happens as a result of the request�[q], for some indexq. By the
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q

p1 pk−1

si+1

p

Fig. 7.�[q]: causesp to be evicted.�[si+1]: first fault onp after�[q]—phasePi+1 begins.

dj

dj dj

pj pj

q

1

hj
1

r

hj
r

Fig. 8. �[hl
j
]: last request topj before�[q]. �[hr

j
]: first request topj after�[q].

definition of LFD and the fact thatp is evicted, each of thek−1 other pagesp1, . . . , pk−1 in fast memory
are requested at some point between�[q] and�[si+1] (see Fig.7).

Each of these requests must be free. This can be seen in the following way. Assume that�[t], t > q, is a
fault onpj , 1 � j � k−1. Then,pj must have been evicted at some point between�[q] and�[t]. Hence,
by the definition of a phase,t � si+1. In other words, there are no faults on any of the pagesp1, . . . , pk−1
after�[q] in phasePi .

For 1� j � k − 1, letrj be the first request topj after�[q]. By the definition of LFD, none of the first
k requests afterrj is a fault onpj . Thus, when calculatingW(rj ), only requests to the left ofrj can be
problematic. Lethl

j be the largest index smaller thanq such that�[hl
j ] is a request topj . Furthermore,

let hr
j be the index ofrj and letdj = hr

j − hl
j (see Fig.8). Then,W(rj ) = min{k + 1, dj }.

Now, letd l
j = q − hl

j anddr
j = hr

j − q and note that

k−1∑
j=1

dj =
k−1∑
j=1

(d l
j + dr

j ) =
k−1∑
j=1

d l
j +

k−1∑
j=1

dr
j � 2

k−1∑
j=1

j.

Let Rbe the set of requestsrj such thatdj � k + 1, and letm = |R|. Then,

k−1∑
j=1

W(rj ) � (k − 1 − m)(k + 1) +
∑
rj∈R

dj

� k2 − 1 − m(k + 1) + 2
m∑

j=1

j = k2 − 1 + m2 − km.

This lower bound on
∑k−1

j=1 W(rj ) is minimized whenm = k
2, if k is even, and whenm = k−1

2 , if k is
odd. Inserting these values ofm in the lower bound, the inequality of the lemma is obtained.�
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Theorem 14. The fault rate of LFD is

FLFD(f ) �


4(M − k)

4M − k − 3
· f (k + 1)

k + 1
k odd,

4(M − k)

4M − k − 3 − 1
k+1

· f (k + 1)

k + 1
k even.

Proof. Consider any request sequence� consistent withf. Since no window of lengthk+1 contains more
than one fault on the same page, each fault contributesk + 1 toNk+1. Lemma8 provides a lower bound
on the contribution from the free requests of each phase.

Within a phase there is at most one fault on each page, and thek pages that are in fast memory at the
beginning of a phase do not cause a fault within the phase. Thus, each phase contains at mostM − k

faults. LetFi be the number of faults in phasePi , let W be defined as in Lemma8, and letNi
k+1 be the

contribution toNk+1 from the requests inPi . Then

Ni
k+1

Fi

�
(k + 1)Fi + W

Fi

�
(k + 1)(M − k) + W

M − k
.

Solving forFi yields

Fi �
M − k

(k + 1)(M − k) + W
· Ni

k+1

and

LFD(�)=
n∑

i=1

Fi =
n−2∑
i=2

Fi + c �
M − k

(k + 1)(M − k) + W

n−2∑
i=2

Ni
k+1 + c

= M − k

(k + 1)(M − k) + W
· Nk+1 + c′,

wherec andc′ are constants, i.e., independent of|�|. Thus,

FLFD(�) �
M − k

(k + 1)(M − k) + W
· Av(k + 1) + c′

|�|
�

M − k

(k + 1)(M − k) + W
· f (k + 1) + c′

|�| .

Now, the theorem follows by using that3
4k

2 − 3
4 = 3

4(k − 1)(k + 1):

FLFD(�) �
M − k

(k + 1)(M − k) + 3
4(k − 1)(k + 1)

f (k + 1) + c′

|�|
= 4(M − k)

4M − k − 3

f (k + 1)

k + 1
+ c′

|�| k odd
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and

FLFD(�) �
M − k

(k + 1)(M − k) + 3
4(k − 1)(k + 1) − 1

4

f (k + 1) + c′

|�|
= 4(M − k)

4M − k − 3 − 1
k+1

f (k + 1)

k + 1
+ c′

|�| k even. �

Theorem 15. There exists a concave∗ function f such that

FLFD(f ) �


4(M − k)

4M − k − 3
· f (k + 1)

k + 1
k odd,

4(M − k)

4M − k − 3 − 1
k+1

· f (k + 1)

k + 1
k even.

Proof. Consider the functionf given in Lemma7. For � � 3, Av∞
M(�) < �. Hence, fork � 2 andn

sufficiently large, insertingh = M yields,

f (k + 1)= k + 1 − k2 − 1

4(M − 1)
+ M

n − 1

= (4M − k − 3 + ε)(k + 1)

4(M − 1)
k odd

and

f (k + 1)= k + 1 − k2

4(M − 1)
+ M

n − 1

= (4M − k − 3 − 1
k+1 + ε)(k + 1)

4(M − 1)
k even,

whereε = 4(M−1)
k+1

M
n−1. The sequenceUpDowN n

M is consistent withf andf is concave∗ . It is easy to verify
that, in each “up” and each “down” subphase, LFD faults on the first request and the lastM − k − 1
requests . Thus,

FLFD(UpDowN
n
M) �

M − k

M − 1
· f (k + 1)

f (k + 1)

=


4(M − k)

4M − k − 3 + ε
· f (k + 1)

k + 1
k odd,

4(M − k)

4M − k − 3 − 1
k+1 + ε

· f (k + 1)

k + 1
k even. �
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(a) VAX, PASCAL, 500 pages.
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(b)VAX, SPIC, 385 pages.
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(c) SPARC, GCC, 276 pages.
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(d) SPARC, COMPRESS, 229 pages.

Fig. 9. Maximum and average size of the working set in windows of size up to 100,000 requests. Each diagram’s caption gives
the architecture, the name of the trace, and the number of distinct pages requested in the entire sequence.

7. Experiments

In this section, we present some results of our experimental study in which we compared the worst
case fault rates developed in the previous sections to the fault rates observed on real processor traces. We
analyzed memory reference traces from the New Mexico State University Trace Base[14] that contains
standard benchmarks. We selected traces from VAX and SPARC platforms. More specifically, we chose
the ATUM VAX traces and a bundle of SPARC traces that were collected while running the SPEC92
benchmark suite. The sets consist of a collection of 9, respectively, 13 memory reference traces from
single processes. The request sequences contain both data read/write requests and instruction fetches.
The SPARC traces were truncated after 10 million references, whereas the VAX traces vary in length, but
are all about 400,000 requests. We worked with a page size of 512 bytes for the VAX architecture and a
page size of 2048 bytes for the SPARC architecture.

We first analyzed the maximum and average working set size in windows of up to 100,000 requests.
Fig. 9 presents the results for four specific traces, two VAX traces and two SPARC traces. As illustrated
by the figure, the behavior of the working set size proposed by Denning for a single window of increasing
size can also be observedglobally, taking the maximum/average working set size overall windows of
a request sequence; the curves have an overall concave behavior. Only in the Max-Model, some minor
adjustments are necessary to obtain a concave∗ function. We also observe that, for all window sizes, the
working set size is very small.
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Fig. 10. Measured fault rates and upper bounds on the fault rates for FIFO and LRU. The fast memory sizek varies in the range
of 1 up to the total number of distinct pages requested in the entire sequence.

In the second part of the experiments, we evaluated the fault rates of LRU, FIFO, and LFD on the
various traces and compared the values to the corresponding bounds we developed for both the Max-
and the Average-Model. We performed the comparison for cache sizes ranging from 1 to the maximum
working set size. Figs.10and11present the results for the VAX Pascal and the SPARC Compress traces.
Fig. 10 shows the results for LRU and FIFO. In each plot, the two lower curves represent the empirical
fault rates of LRU and FIFO, while the two curves in the middle show the corresponding theoretical upper
bounds in the Max-Model. The upper curve depicts the bound in the Average-Model. Fig.11 shows the
bounds for LFD in the same relative order.

Since the fault rate as defined in Definition2 is a worst-case measure, we cannot expect that the
theoretical bounds on the fault rates match the empirical values completely. Nevertheless, the gap is not
large andconsiderablysmaller than in the case of competitiveness. On real world traces, the “empirical
competitiveness” of LRU and FIFO is typically no larger than 4. This was observed in[3,18] and also
showed in our experiments. On the other hand, the competitive ratios from theory arek. Thus, the
gap between the theoretical and empirical competitiveness isk/4. In our paging model, the gaps are
considerably smaller. For the VAX PASCAL and SPARC COMPRESS traces for instance the gap is,
expressed as a function linear ink, usually betweenk/50 tok/30. For some of the traces we examined,
the values were even belowk/1000. We also remark that the results for the Max-Model are better than
for the Average-Model. We conclude that while the Average-Model is interesting from a mathematical
point of view, the Max-Model more accurately models request sequences that occur in practice.
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Fig. 11. Measured fault rates and upper bounds on the fault rates for LFD. The fast memory sizek varies in the range of 1 up to
the total number of distinct pages requested in the entire sequence.
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