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Abstract

Cilk (pronounced “silk”) is a C-based runtime system for multi-
threaded parallel programming. In this paper, we document the effi-

ciency of the Cilk work-stealing scheduler, both empirically and ana-

lytically. We show that on real and synthetic applications, the “work”
and “critical path” of a Cilk computation can be used to accurately
model performance. Consequently, a Cilk programmer can focus on

reducing the work and critical path of his computation, insulated from

load balancing and other rtmtime scheduling issues. We also prove

that for the class of “fully strict” (well-structured) programs, the Cilk

scheduler achieves space, time, and communication bounds all within

a constant factor of optimal.
The Cilk rmrtime system currently runs on the Connection Ma-

chine CM5 MPP, the Intel Paragon MPP, the Silicon Graphics Power

Challenge SMP, and the MIT Phish network of workstations. Ap-
plications written in Cilk include protein folding, graphic rendering,

backtrack search, and the *Socrates chess program, which won third
prize in the 1994 ACM International Computer Chess Championship.

1 Introduction

Multithreading has become an increasingly popular way to implement

dynamic, highly asynchronous, concurrent programs [1, 8,9, 10, 11,

12, 15, 19,21,22,24,25,28,33, 34,36,39, 40]. A multithreaded sys-

tem provides the programmer with a means to create, synchronize, and

schedule threads. Although the schedulers in many of these rtmtime

systems seem to perform well in practice, none provide users with a

guarantee of application performance. Cilk is a runtime system whose
work-stealing scheduler is efficient in theory as well as in practice.

Moreover, it gives the user an algorithmic model of application per-

formance based on the measures of “work” and “critical path” which
can be used to predict the runtime of a Cilk program accurately.

A Cilk mtrltithreaded computation can be viewed as a directed

acyclic graph (dag) that unfolds dynamically, as is shown schemat-
ically in Figure 1. A Cilk program consists of a collection of Cilk
procedures, each of which is broken into a sequence of threads, which
form the vertices of the dag. Each thread is a rtonblocking C func-

tion, which means that it can run to completion without waiting or
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Figure 1: The Cilk model of multithreaded computation. Threads are

shown as circles, which are grouped into procedures. Each downward edge
corresponds to a spawn of a child, each horizontal edge corresponds to a spawn

of a successor, and each upward, curved edge corresponds to a data dependency.
The numbers in tbe figure indicate the levels of procedures in the spawn tree.

suspending once it has been invoked. As one of the threads from a
Cilk procedure runs, it can spawn a child thread which begins a new
child procedure. In the figure, downward edges connect threads and

their procedures with the children they have spawned. A spawn is

like a subroutine call, except that the calling thread may execute cost-

ctrrrently with its child, possibly spawning additional children. Since

threads cannot block in the Cilk model, a thread cannot spawn chil-
dren and then wait for values to be returned. Rather, the thread must

additionally spawn a successor thread to receive the children’s return

vahres when they are produced. A thread and its successors are con-

sidered to be parts of the same Cilk procedure. In the figure, sequences

of successor threads that form Cilk procedures are connected by hori-

zontal edges. Return values, and other values sent from one thread to
another, induce data dependencies among the threads, where a thread
receiving a value cannot begin until another thread sends the value.
Data dependencies are shown as upward, curved edges in the figure.

Thus, a Cilk computation unfolds as a spawn tree composed of proce-

dures and the spawn edges that connect them to their children, but the
execution is constrained to follow the precedence relation determined

by the dag of threads.
The execution time of any Cilk program on a parallel computer

with P processors is constrained by two parameters of the computa-

tion: the work and the critical path. The work, denoted T1, is the

time used by a one-processor execution of the program, which cor-
responds to the sum of the execution times of all the threads. The
critical path length, denoted T~, is the total amount of time required

by an infinite-processor execution, which corresponds to the largest
sum of thread execution times along any path. Whh P processors, the

execution time cannot be less than T’1/P or less than T~. The Cilk
scheduler uses “work stealing” [3, 7, 13, 14, 15, 19,27,28,29,34, 40]
to achieve execution time very near to the sum of these two measures.
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Off-line techniques for computing such efficient schedules have been
known for a long time [5, 16, 17], but this efficiency has been difficult
to achieve on-line in a distributed environment while simultaneously

using small amounts of space and communication.

We demonstrate the efficiency of the Cilk scheduler both empir-

ically and analytically. Empirically, we have been able to document

that Cilk works well for dynamic, asynchronous, tree-like, MIMD-

style computations. To date, the applications we have programmed

include protein folding, graphic rendering, backtrack search, and the
*Socrates chess program, which won third prize in the 1994 ACM

International Computer Chess Championship. Many of these applica-

tions pose problems for more traditional parallel environments, such

as message passing [38] and data parallel [2, 20], because of the unpre-
dictability of the dynamic workloads on processors. Analytically, we

prove that for “fully strict” (well-structured) programs, Cilk’s work-
stealing scheduler achieves execution space, time, and communication

bounds all within a constant factor of optimal. To date, all of the ap-

plications that we have coded are fully strict.

The Cilk language is an extension to C that provides an abstraction
of threads in explicit continuation-passing style. A Cilk program is

preprocessed to C and then linked with a runtime library to run on the

Connection Machine CM5 MPP, the Intel Paragon MPP, the Silicon

Graphics Power Challenge SMP, or the MIT Phish [4] network of
workstations. In this paper, we focus on the Connection Machine

CM5 implementation of Cilk. The Cilk scheduler on the CM5 is
written in about 30 pages of C, and it performs communication among
processors using the Strata [6] active-message library.

The remainder of this paper is organized as follows. Section 2

describes Cilk’s runtime data structures and the C language extensions
that are used for programming. Section 3 describes the work-stealing

scheduler. Section 4 documents the performance of several Cilk ap-
plications. Section 5 shows how the work and critical path of a Cilk

computation can be used to model performance. Section 6 shows ana-

lytically that the scheduler works well. Finally, Section 7 offers some

concluding remarks and describes our plans for the future.

2 The Cilk programming environment and implementa-
tion

In this section we describe a C language extension that we have de-
veloped to ease the task of coding Cilk programs. We also explain the

basic runtime data structures that Cilk uses.
In the Cilk language, a thread T is defined in a manner similar to

a C function definition:

thread T (ai-g-decls ) { stints . . . }

The Cilk preprocessor translates T into a C function of one argument
and void return type. The one argument is a pointer to a closure data
structure, illustrated in Figure 2, which holds the arguments for T. A

closure consists of a pointer to the C function for T, a slot for each
of the specified arguments, and a join counter indicating the number

of missing arguments that need to be supplied before T is ready to
run. A closure is ready if it has obtained all of its arguments, and it

is waidng if some arguments are missing. To run a ready closure, the
Cilk scheduler invokes the thread as a procedure using the closure itself
as its sole argument. Within the code for the thread, the arguments
are copied out of the closure data structure into local variables. The

closure is allocated from a simple runtime heap when it is created, and
it is returned to the heap when the thread terminates.

The Cilk language supports a data type called a cmrdnuatiorr,
which is specified by the type modifier keyword cent. A continuation
is essentially a global reference to an empty argument slot of a closure,
implemented as a compound data structure containing a pointer to a
closure and an offset that designates one of the closure’s argument

waiting closure code

ready closure

Figure 2: The closure data structure.

slots. Continuations can be created and passed among threads, which
enables threads to communicate and synchronize with each other.

Continuations are typed with the C data type of the slot in the closure.
At runtime, a thread can spawn a child thread by creating a closure

for the child. Spawning is specified in the Cilk language as follows:

spawn T (args . )

This statement creates a child closure, fills in all available arguments,

and initializes the join counter to the number of missing arguments.
Available arguments are specified as in C. To specify a missing argu-
ment, the user specifies a continuation variable (type cent) preceded

by a question mark. For example, if the second argument is ?k, then

Cilk sets the variable k to a continuation that refers to the second argu-
ment slot of the created closure. If the closure is ready, that is, it has no

missing arguments, then spawn causes the closure to be immediately
posted to the scheduler for execution. In typical applications, child
closures are usually created with no missing arguments.

To create a successor thread, a thread executes the following state-

ment:

spawnnext 7’ (args )

This statement is semantically identical to spawn, but it informs

the scheduler that the new closure should be treated as a successor,

as opposed to a child. Successor closures are usually created with
some missing arguments, which are filled in by values produced by

the children.

ACilkprocedure does notever retumvahres inthenonnal way
toaparent procedure. Instead, theprogrammer must code the parent
procedure astwo threads. The first thread spawns thechild procedure,

passing it a continuation pointing to the successor thread’s closure.

The child sends its “return” valtre explicitly as an argument to the
waiting successor. This strategy of communicating between threads
iscalled explicit contirruadorr passirrg. Cilkprovides primitives of the
following form to send values from one closure to anothec

s end.argument (k, value)

This statement sends the value value to the argument slot of a waiting

closure specified by the continuation k. The types of the continuation

and the value must be compatible. The join counter of the waiting

closure is decremented, and if it becomes zero, then the closure is
ready and is posted to the scheduler.

Figure 3 shows the familiar recursive Fibonacci procedure written

in Cilk. It consists of two threads, fib and its successor sum. Re-
flecting the explicit continuation passing style that Cilk supports, the
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thread flb (cent int k, i.nt n)
{ if (n<Z)

send.argument (k, n)
else
{ ccmt int x, y;

spawn-next sum (k, ?x, ?y) ;
spawn tib (x, n-1) ;
spawn rib (y, n-2) ;

}
}

thread sum (cent int k, int x, int y)
{ send-argument (k, x.y) ;

}

figure 3: A Cilk procedure, consisting of two threads, to compute the rtth

Fibonacci number.

first argument to each thread is the continuation specifying where the

“return” value should be placed.

When the fib function is invoked, it first checks to see if the

boundary case has been reached, in which case it uses sendargument
to “return” the value of n to the slot specified by continuation k.
Otherwise, it spawns the successor thread sum, as well as two children

to compute the two subcases. Each of these two children is given a

continuation specifying to which argument in the sum thread it should

send its result. The sum thread simply adds the two arguments when
they arrive and sends this result to the slot designated by k.

Although writing in explicit continuation passing style is some-
what onerous for the programmer, the decision to break procedures

into separate nonblocking threads simplifies the Cilk runtime system.

Each Cilk thread leaves the C rrmtime stack empty when it completes.

Thus, Cilk can run on top of a vanilla C rrtntime system. A com-

mon alternative [19, 25, 32, 34] is to support a programming style

in which a thread suspends whenever it discovers that required val-
ues have not yet been computed, resuming when the values become

available. When a thread suspends, however, it may leave temporary
values on the rtmtime stack which must be saved, or each thread must

have its own rtmtime stack. Consequently, this akemative strategy

requires changes to the runtime system that depend on the C calling

stack layout and register usage conventions. Another advantage of
Cilk’s strategy is that it allows multiple children to be spawned from
a single nonblocking thread, which saves on context switching. In

Cilk, r children can be spawned and executed with only r + 1 context

switches, whereas the alternative of suspending whenever a thread is

spawned causes 2r context switches. Since our primary interest is in
understanding how to build efficient multithreaded rnntime systems,

but without redesigning the basic C runtime system, we chose the
alternative of burdening the programmer with a requirement which

is perhaps less elegant linguistically, but which yields a simple and

portable runtime implementation.

Cilk supports a variety of features that give the programmer greater
control over rtmtime performance. For example, when the last action
of a thread is to spawn a ready thread, the programmer can use the
keyword cal 1 instead of spawn that produces a “tail call” to run the
new thread immediately without invoking the scheduler. Cilk also
allows arrays and subarrays to be passed as arguments to closures.

Other features include various abilities to override the scheduler’s
decisions, including on which processor a thread should be placed and

how to pack and unpack data when a closure is migrated from one

processor to another.

3 The Cilk work-stealing scheduler

Cilk’s scheduler uses the technique of work-stealing [3,7, 13, 14, 15,

19,27,28,29,34, 40] in which a processor (the thief) who runs out of

work selects another processor (the victim) from whom to steal work,

and then steals the shallowest ready thread in the victim’s spawn tree.

Cilk’s strategy is for thieves to choose victims at random [3, 27, 37].

At runtime, each processor maintains a local ready queue to hold

ready closures. Each closure has an associated level, which corre-

sponds to the number of spawn’s (but not spawnnext ‘s) on the path

from the root of the spawn tree. The ready queue is an array in which

the .Ltb element contains a linked list of all ready closures having

level L.

Cilk begins executing the user program by initializing all ready
queues to be empty, placing the root thread into the level-O list of

Processor O’s queue, and then starting a scheduling loop on each
processor. Within a scheduling loop, a processor first checks to see
whether its ready queue is empty. If it is, the processor commences

“work stealing,” which will be described shortly. Otherwise, the
processor performs the following steps:

1. Remove the thread at the head of the list of the deepest nonempty

level in the ready queue.

2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads,

When the thread terminates, control returns to the scheduling loop.

When a thread at level L spawns a child thread T, the scheduler

executes the following operations:

1. Allocate and initialize a closure for T.

2. Copy the available arguments into the closure, initialize any

continuations to point to missing arguments, and initialize the
join counter to the number of missing arguments.

3. Label the closure with level L + 1.

4. If there are no missing arguments, post the closure to the ready

queue by inserting it at the head of the level-(L + 1)list.

Execution of spawnnext is similar, except that the closure is labeled
with level L and, if it is ready, posted to the level-L list.

A processor that executes send-argument(k, value) performs the
following steps:

1. Find the closure and argument slot referenced by the continua

tion k.

2. Place value in the argument slot, and decrement the join counter
of the cIosure.

3. If the join counter goes to zero, post the closure to the ready

queue at the appropriate level.

When the continuation k refers to a closure on a remote processor,

network communication ensues. The processor that initiated ths

send-argument function sends a message to the remote processor

to perform the operations. The only subtlety occurs in step 3. If the

closure must be posted, it is posted to the ready queue of the initiating

processor, rather than to that of the remote processor. This policy is
necessary for the scheduler to be provably good, but as a practical

matter, we have also had success with posting the closure to the re-
mote processor’s queue, which can sometimes save a few percent in
overhead.

If the scheduler attempts to remove a thread from an empty ready
queue, the processor becomes a thief and commences work srealing

as follows:

1. Select a victim processor uniformly at random.

2. If the victim’s ready queue is empty, go to step 1.

3. If the victim’s ready queue is nonempty, extract a thread from
the tail of the list in the shallowest nonempty level of the ready

queue, and invoke it.
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Work stealing is implemented with a simple request-reply communi-

cation protocol between the thief and victim.
Why steal work from the shallowest level of the ready queue? The

reason is two-fold. First, we would like to steal large amounts of work,

and shallow closures are likely to execute for longer than deep ones.

Stealing large amounts of work tends to lower the communication
cost of the program, because fewer steals are necessary. Second, the

closures at the shallowest level of the ready queue are also the ones that

are shallowest in the dag, a key fact proven in Section 6. Consequently,
If processors are idle, the work they steal tends to make progress along
the critical path.

4 Performance of Cilk applications

This section presents several applications that we have used to bench-

mark the Cilk scheduler. We also present empirical evidence from

experiments run on a CM5 supercomputer to document the efficiency
of our work-stealing scheduler. The CM5 is a massively parallel
computer based on 32MHz SPARC processors with a fat-tree inter-

connection network [30].
The applications are described below:

● fib is the same as was presented in Section 2, except that the

second recursive spawn is replaced by a “tailc all” that avoids
thescheduler. Thisprogram isagoodmeasure of Cilkoverhead,
because the thread length is so small.

● queens is a backtrack search program that solves the problem
of placing N queens on a A’ x N chessboard so that no two

queens attack each other. The Cilkprogram is based onsertal
code by R. Sargent of the MIT Media Laboratory. Thread length
was enhanced by serializing the bottom 7 levels of the search

tree.

● pfold is a protein-folding program [35] written in conjunc-
tion with V. Pandeof MIT’s Center for Material Sciences and
Engineering. This program finds hamiltonian paths in a three-
dimensional grid using backtrack search. Itwasthe first pro-
gram toenumerate allhamiltonian paths ina3 x 4 x 4 grid.

We timed the enumeration of all paths starting with a certain
sequence.

● ray is a parallel program for graphics rendering based on the
serial POV- Ray program, which uses a ray-tracing algorithm.

The entire POV-Ray system contains over 20,000 lines of C

code, but the core of POV-Ray is a simple doubly nested loop

that iterates over each pixel in a two-d~mensional image. For
ray we converted the nested loops into a 4-ary divide-and-

conquer control structure using spawns. 1 Our measurements
do not include the approximately 2.4 seconds of startup time
required to read and process the scene description file.

● knary (k, n, r ) is a synthetic benchmark whose parameters can
be set to produce a variety of values for work and critical path.
It generates a tree of branching factor k and depth n in which

the first r children at every level are executed serially and the
remainder are executed in parallel. At each node of the tree, the

program runs an empty “for” loop for 400 iterations.

● *Socrates is a parallel chess program that uses the Jamboree
search algorlthm [23, 29] to parallelize a minmax tree search.

The work of the algorithm vanes with the number of processors,
because it does speculative work that may be aborted during
runtime. #30crates is a production-quality program that won
third prize in the 1994 ACM International Computer Chess

1Imtiall y, the serial POV-Rayprogramwasabout5percemslowerthan the Cilk version

running on one processor. The reason was that the divide-and-conquer decomposition

performed by the C]lk code provides better Iocrdity than the doubly nested loop of the

serial code Modlfymg the serial code to inmate the C]lk decomposition improved its

performance Tunings for the improved version ~e given in the table,

Championship running on the 512-node CM5 m the National

Center for Supercomputing Applications at the University of
Illinois, Urbana-Champaign.

Table 4 shows typical performance measures for these Cilk appli-

cations. Each column presents data from a single run of a benchmark

application. We adopt the following notations, which are used in
the table. For each application, we have an efficient serial C im-
plementation, compiled using gcc -02, whose measured runtime is

denoted T,end. The work T1 is the measured execution time for the
Cilk program running on a single node of the CM5.2 The critical
path length T~ of the Cilk computation is measured by timestamping

each thread and does not include scheduling or communication costs.
The measured P-processor execution time of the Cilk program run-

ning on the CM5 is given by TP, which includes all scheduling and

communication costs. The row labeled “threads” indicates the number

of threads executed, and “thread length” is the average thread length
(work divided by the number of threads).

Certain derived parameters are also displayed in the table. The

ratio T~end/T1 N the ejjiciertcy of the Cilk program relative to the

C program. The ratio TI /Tw is the average parallelism. The value

T1 /P + T~ is a simple model of the runtime, which will be discussed

in the next section. The speedup is T1 /TP, and the parallel ej$ciency

is T1 / ( P. TP ). The row labeled “space/proc.” indicates the maximum
number of closures allocated at any time on any processor. The row
labeled “requests/proc.” indicates the average number of steal requests

made by a processor during the execution, and “steals/proc.” gives the

average number of closures actually stolen.
The data in Table 4 shows two important relationships: one be-

tween efficiency and thread length, and another between speedup and
average parallelism.

Considering the relationship between efficiency T&ial/T1 and

thread length, we see that for programs with moderately long threads,

the Cilk scheduler induces very little overhead. The queens, pf old,
ray, and knary programs have threads with average length greater

than 50 microseconds and have efficiency greater than 90 percent.
On the other hand, the fib program has low efficiency, because the
threads are so short: fib does almost nothing besides spawn and

send-argument.
Despite it’s long threads, the *Socrates program has low efficiency,

because its parallel Jamboree search algorithm [29] is based on specu-

latively searching subtrees that are not searched by a serial algorithm.

Consequently, as we increase the number of processors, the program
executes more threads and, hence, does more work. For example,

the 256-processor execution did 7023 seconds of work whereas the
32-processor execution did only 3644 seconds of work. Both of these
executions did considerably more work than the serial program’s 1665

seconds of work. Thus, although we observe low efficiency, it is due
to the parallel algorithm and not to Cilk overhead.

Looking at the speedup T1 /TP measured on 32 and 256 proces-

sors, we see that when the average parallelism T1 /T~ is large com-
pared with the number P of processors, Cilk programs achieve nearly

perfect linear speedup, but when the average parallelism is small, the

speedup is much less. The fib, queens, p f old, and ray programs,
for example, have in excess of 7000-fold parallelism and achieve more
than 99 percent of perfect linear speedup on 32 processors and more

than 95 percent of perfect linear speedup on 256 processors. 3 The

*Socrates program exhibits somewhat less parallelism and also some-

2For the +Socrates prosram, T1 IS not the measuredexecuoon time, but rather it IS
an estimate of the work obtained hy stmtmmg the executmn times of all threads, wh]ch

yields a shght underestimate. *Socrates is an unusually comphcated apphcation, because

Its speculative execunon yields unpredictable work and critical path Consequently, the

measured runtime on one processor does not accurately reflect the work on P > 1
processors.

3 In fact, the ray program achieves superlinea speedup even when comparing to the

efficient serial implementation. We suspect that cache effects cause this phenomenon.
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fib queens pfold ray knary knary *Socrates *Socrates

(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (depth 10)

(32 proc.) (256 proc)

(applicationparatneters)
Z&, 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665

T1 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023

T,JT1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371

Tm 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24

T1 JTW 224417 7380 14879 17650 70.56 178.2 1163 2168

threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823

thread length 4.276ps 1208/M 68.08fls 1726ps 53.69,us 51 .99ps 139.3ps 135.9ps

(32-processor experiments)
Tp 2.298 8.012 20.26 21.68 15.13 1.633 126.1

T1/P + Tw 2.287 7.991 20.29 22.93 14.28 1.675 117.0

T1 /TP 31.84 31.78 31.97 33.79 20.78 27.81 28.90

T1/(P TP) 0,9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030

space/proc. 70 95 47 39 41 42 386
requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484
steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395

(256-processor experiments)
Tp 0.2892 1.045 2.590 2.765 8.590 0.4636 34.32

TI/p + TM 0.2861 1.029 2.574 2.903 5.687 0.4325 30.67
T1 /TP 253.0 243.7 250.1 265.0 36.62 98.00 204.6
T1/(P ~TP) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 0.7993
space/proc. 66 76 47 32 48 40 405
requests/proc. 73.66 80.40 97.79 82.75 151803 7527 30646
steals/proc. 24.10 21.20 23.05 18.34 6378 550 1540

Table 4: Performance of Cilk on various applications. All times are in seconds, except where noted,

what less speedup. On 32 processors the *Socrates program has 1163-

fold parallelism, yielding 90 percent of perfect linear speedup, while
on 256 processors it has 2168-fold parallelism yielding 80 percent
of perfect linear speedup. With even less parallelism, as exhibited
in the knary benchmarks, less speedup is obtained. For example,
the knary ( 10, 5, 2 ) benchmark exhibits only 70-fold parallelism,

and it realizes barely more than 20-fold speedup on 32 processors

(less than 65 percent of perfect linear speedup). With 178-fold paral-
lelism, knary ( 10,4,1 ) achieves 27-fold speedup on 32 processors

(87 percent of perfect linear speedup), but only 98-fold speedup on

256 processors (38 percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’s abil-
ity to exploit parallelism, to obtain application speedup, we must fac-

tor in the efficiency of the Cilk program compared with the serial

C program. Specifically, the application speedup T,efid/TP is the
product of efficiency T~eti&/Tl and speedup T1 /TP. For example,

applications such as fib and *Socrates with low efficiency generate
correspondingly low application speedup. The *Socrates program,
with efficiency 0.2371 and speedup 204.6 on 256 processors, exhibits

application speedup of 0.2371 .204.6 = 48.51. For the purpose of

performance prediction, we prefer to decouple the efficiency of the

application from the efficiency of the scheduler.
Looking more carefully at the cost of a spawn in Cilk, we find that

it takes a fixed overhead of about 50 cycles to allocate and initialize a

closure, plus about 8 cycles for each word argument. In comparison,

a C function call on a CM5 processor takes 2 cycles of fixed overhead
(assuming no register window overtlow) plus 1 cycle for each word
argument (assuming all arguments are transferred in registers). Thus,
a spawn in Cilk is roughly an order of magnitude more expensive than
a C function call. This Cilk overhead is quite apparent in the fib pro-
gram,whichdoes almostnothingbesides spawnand send~rgument.
Based on fib’s measured efficiency of 0.116, we can conclude that the

aggregate average cost of a spawdsendargument in Cilk is between

8 and 9 times the cost of a function call/return in C.
Efficient execution of programs with short threads requires a low-

overhead spawn operation. Ascanbe observed from Table4, the
vast majority of threads execute on the same processor on which they

are spawned. Forexample, the fibprogram executed over 17 million
threads but migrated only 6170 (24. 10 per processor) when run with

256processors. Taking advantage ofthisproperty, other researchers

[25, 32] have developed techniques for implementing spawns such that

when the child thread executes on the same processor as its parent,

the cost of the spawn operation is roughly equal the cost of a C
function call. We hope to incorporate such techniques into future

implementations of Cilk.

Finally, we make two observations about the space and communi-
cation measures in Table 4.

Looking at the “space/proc.” rows, we observe that the space per
processor is generally quite small and does not grow with the number
of processors. Forexample, *Socrates on32processors executes over

26 million threads, yet no processor ever has more than 386 allocated

closures. 0n256 processors, thenumber ofexecuted threads nearly

doubles to over51 million, but the space per processors barely changes.

In Section 6 we show formally that for Cilk programs, the space per

processor does not grow as we add processors.
Looking at the “requests/proc.” and “steals/proc,” rows in Table 4,

we observe that the amount of communication grows with the critical

path but does not grow with the work. For example, fib, queens,
pfold, and ray all have critical paths under a tenth of a second
long and perform fewer than 220 requests and 80 steals per processor,

whereas knary(10,5,2) and*Socrates havecritical paths morethan
3 seconds long and perform more than 20,000 requests and 1500 steals
perprocessor. Thetable does notshow anyclear correlation between
work andeither requests or steals. For example, ray does more than
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twice as much work as knary ( 10, 5, 2), yet it performs two orders of
magnitude fewer requests. In Section 6,weshow that for’’fully strict”
Cilk programs, the communication per processor grows linearly with
the critical path length and does not grow as function of the work.

5 Modeling performance

In this section, we further document the effectweness of the Cilk

scheduler by showing empirically that it schedules applications in
a near-optimal fashion. Specifically, we use the knary synthetic

benchmark to show that the runtime of an application on P processors

can be accurately modeled as TP x 2’1/ P + cm 1“~, where cm ~

1.5. This result shows that we obtain nearly perfect linear speedup

when the critical path is short compared with the average amount
of work per processor. We also show that a model of this kind is
accurate even for *Socrates, which is our most complex application
programmed to date and which does not obey all the assumptions

assumed by the theoretical analyses in Section 6.

A good scheduler should to run an application with T1 work in
T1 /P time on P processors. Such perfect linear speedup cannot be

obtained whenever T~ > T1 /P, since we always have TP > T~,

or more generally, TP ~ max {Tl /P, T~ }. The critical path TM
is the stronger lower bound on TP whenever P exceeds the average

parallelism T1 /T~, and T1 /P is the stronger bound otherwise. A

good scheduler should meet each of these bounds as closely as possible.
In order to investigate how well the Cilk scheduler meets these two

lower bounds, we used our knary benchmark (described in Section 4),
which can exhibit a range of values for work and critical path.

Figure 5 shows the outcome of many experiments of running
knary with various values for k, n, r, and P. The figure plots

the speedup T1 /TP for each run against the machine size P for that

run. In order to compare the outcomes for runs with different pa-

rameters, we have normalized the data by dividing the plotted values
by the average parallelism 2’1/T~. Thus, the horizontal position of

each datum is P/ (Tl /T~ ), and the vertical position of each datum

is (Tl / TP ) / (TI /Tm ) = Tm f TP. Consequently, on the horizontal

axis, the normalized machine-size is 1.0 when the average available

parallelism is equal to the machine size. On the vertical axis, the

normalized speedup is 1.0 when the runtime equals the critical path,
and it is 0.1 when the runtime is 10 times the critical path. We can
draw the two lower bounds on time as upper bounds on speedup. The

horizontal line at 1.0 is the upper bound on speedup obtained from
the critical path, and the 45-degree line is the upper bound on speedup

obtained from the work per processor. As can be seen from the figure,
on the knary runs for which the average parallelism exceeds the num-
ber of processors (normalized machine size < 1), the Cilk scheduler

obtains nearly perfect linear speedup. In the region where the number
of processors is large compared to the average parallelism (normal-

ized machine size > 1), the data is more scattered, but the speedup M

always within a factor of 4 of the critical-path upper bound.

The theoretical results from Section 6 show that the expected
running time of an application on P processors is TP = O(T1 /P +

Z’~ ). Thus, it makes sense to try to tit the data to a curve of the
form TP = c1 (T1/P) + CM (Tm ). A least-squares fit to the data

to minimize the relative error yields c1 = 0.9543 + 0.1775 and

& = 1.54+ 0.3888 with 95 percent confidence. The R2 correlation
coefficient of the fit is 0.989101, and the mean relative error is 13.07
percent. The curve fit 1s shown in Figure 5, which also plots the
simpler curves TP = T1/P + Tm and TP = TI/P + 2. Tm for
comparison. As can be seen from the figure, little is lost in the linear

speedup range of the curve by assuming that c1 = 1. Indeed, a fit
to Tp = T1/P + c~(T~) yields cm = 1.509 + 0.3727 with

R2 = 0.983592 and a mean relative error of 4.04 percent, which

is m some ways better than the fit that includes a c1 term. (The R2

measure is a little worse, but the mean relative error ]s much better.)
It makes sense that the data points become more scattered when

P is close to or exceeds the average parallelism. In this range, the

amount of time spent in work stealing becomes a significant fraction
of the overall execution time. The real measure of the quality of a
scheduler is how much larger T1 /T~ must be than P before TP

shows substantial influence from the critical path. One can see from
Figure 5 that if the average parallelism exceeds P by a factor of 10,

the critical path has almost no impact on the running time.

To confirm our simple model of the Cilk scheduler’s performance

on a real application, we ran *Socrates on a variety of chess positions.

Figure 6 shows the results of our study, which confirm the results

from the knary synthetic benchmarks. The curve shown is the best

fit to Tp = cl(T1/P) + c~(T@), where c1 = 1.067 & 0.0141
and cm = 1.042 + 0.0467 with 95 percent confidence. The R2
correlation coefficient of the fit is 0.9994, and the mean relative error
is 4.05 percent.

Indeed, as some of us were developing and tuning heuristics to

increase the performance of *Socrates, we used work and critical

path as our measures of progress. This methodology let us avoid
being trapped by the following interesting anomaly. We made an

“improvement” that sped up the program on 32 processors. From

our measurements, however, we discovered that it was faster only

because it saved on work at the expense of a much longer critical path.

Using the simple model TP = T1 /P + TM, we concluded that on
a 512-processor machine, which was our platform for tournaments,
the “improvement” would yield a loss of performance, a fact that
we later verified. Measuring work and critical path enabled us to
use experiments on a 32-processor machme to improve our program
for the 512-processor machine, but without using the 512-processor

machine, on which computer time was scarce.

6 A theoretical analysis of the Ciik scheduler

In this section we use algorithmic analysis techniques to prove that for

the class of “fully strict” Cilk programs, Cilk’s work-stealing schedul-

ing algorithm is efficient with respect to space, time, and commu-

nication. A fully strict program is one for which each thread sends

arguments only to its parent’s successor threads. For this class of
programs, we prove the following three bounds on space, time, and
communication:

Space The space used by a P-processor execution is bounded by
SP ~, SIP, where S1 denotes the space used by the serial

execution of the Cilk program. This bound is existentially

optimal to within a constant factor [3].

Time With P processors, the expected execution time, including

scheduling overhead, is bounded by TP = O(T1 /P + Tm ),
Since both T1 /P and Tw are lower bounds for any P-processor

execution, our expected time bound is within a constant factor

of optimal.

Communication The expected number of bytes commumcated dur-
ing a P-processor execution is O(Tm PSm= ), where Smw de-
notes the largest size of any closure. This bound is existentially

optimal to within a constant factor [41].

The expected time bound and the expected communication bound can

be converted into high-probability bounds at the cost of only a small
additive term in both cases. Proofs of these bounds use generalizations

of the techniques developed in [3]. We defer complete proofs and gwe
outlines here.

The space bound follows from the “busy-leaves” property which
characterizes the allocated closures at all times during the execution.
At any given time during the execution, we say that a closure N a leaf
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Figure 7: Theclosures atsometime during al-processor execution. Data-
dependency edges are not shown. The black nodes represent ready closures,
the gray nodes represent waiting closures, and white nodes representclosures
thathave atready beenexecuted. The black andgray closuresareallocated and
consume space, but the white closures have been deallocated. Gray, curved
edgesrepresent theadditional edgesirr D’ that donotalso belong toll.

if it has no allocate dchildclosures, and we say that a leaf closure is

a primary leaf if, in addition, it has no left-sibling closures allocated.
In Figure 7, which shows the allocated closures at some time during
an execution, closure a is the only primary leaf. Closure b is a leaf,

but it is notprimaty, since it has left siblings and closure c is not

a leaf, because a and its two siblings are counted as children of c.
The busy-leaves property states that every primary leaf closure has

a processor working on it. To prove the space bound, we show that

Cilk’s scheduler maintains the busy-leaves property, and then we show
that the busy-leaves property implies the space bound.

Theorem 1 Foranyfully strict Cilkprogram, rfSlisthespaceused
toexecute the program on 1 processo~ then with anynumber P of
processors, Cilk’swork-stealing scheduler usesatmost SIP space.

Proof We first show by induction on execution time that Cilk’s
work-stealing scheduler maintains the busy-leaves propefiy. We then

show that the busy-leaves property implies the space bound.
To seethat Cilk’s scheduler maintains the busy-leaves property,

we consider the three possible ways that a primary-leaf closure can be

created. First, when a thread spawns children, the leftmost of these
children is a primary leaf. Second, when a thread completes and its

closure is freed, if that closure has a right sibling and that sibling

has no children, then the right-sibling closure becomes a primary
leaf. And third, when a thread completes and its closure is freed, if

that closure has no allocated siblings, then the leftmost closure of its

parent’s successor threads is a primary leaf. The induction follows by
observing that in all three of these cases, Cilk’s scheduler guarantees
that a processor works on the new primary leaf. In the third case we
use the fact that a newly activated closure is posted on the processor
that activated it and not on the processor on which it was residing.

The space bound SP < SIP is obtained by showing that every

allocated closure can be associated with a primary leaf and that the
total space of all closures assigned to a given primary leaf is at most S1.

Since Cilk’s scheduler keeps all primary leaves busy, with P processors
we are guaranteed that at every time during the execution, at most P

primary-leaf closures can be allocated, and hence the total amount of
space is at most SIP.

We associate each allocated closure with a primary leaf as follows.
If the closure is a primary leaf, it is assigned to itself. Otherwise, if
the closure has any allocated children, then it is assigned to the same
primary leaf as its leftmost child. If the closure is a leaf but has some
left siblings, then the closure is assigned to the same primary leaf as its
leftmost sibling. In this recursive fashion, we assign every allocated

closure to a primary leaf. Now, we consider the set of closures assigned

to a given primary leaf. The total space of these closures is at most S1,

because this set of closures is a subset of the closures that are allocated
during a l-processor execution when the processor is executing this

primary leaf, which completes the proof. 9

We now give the theorems bounding execution time and communi-

cation cost. Proofs for these theorems generalize the results of [3] for a

more restricted model of multithreaded computation. As in [3], these
proofs assume a communication model in which messages are delayed

only by contention at destination processors, but no assumptions are

made about the order in which contending messages are delivered [3 1].
The bounds given by these theorems assume that no thread has more
than one successor thread.

The proofs of these theorems are analogous to the proofs of The-

orems 12 and 13 in [3]. We show that certain “critical” threads are
likely to be executed after only a modest number of steal requests, and

that executing a critical thread guarantees progress on the critical path

of the dag.
We first construct an augmented dag D’ that will be used to define

the critical threads. The dag D’ is constructed by adding edges to
the original dag D of the computation. For each child procedure v

of a thread t, we add an edge to D‘ from the first thread of v to
the first thread of the next child procedure spawned by t after v is
spawned. We make the technical assumption that the first thread of

each procedure executes in zero time since we can add a zero-time
thread to the beginning of each procedure without affecting work or

depth. An example of the dag D’ is given in Figure 7, where the

additional edges are shown gray and curved. We draw the children

spawned by a node in right-to-left order in the figure, because the
execution order by the local processor is left to right, corresponding

to LIFO execution. The dag D’ is constructed for analytic purposes

only and has no effect on the scheduling of the threads. An important
property of D’ is that its critical path is the same as the critical path

of the original dag D.
We next define the notion of a critical thread formally. We have

already defined a ready thread as a thread all of whose predecessors
in D have been executed. Similarly, a critical thread is a thread all of

whose predecessors in D‘ have been executed. A critical thread must

be ready, but a ready thread mayor may not be critical. We now state

a lemma which shows that a critical thread must be the shallowest

thread in a ready queue.

Lemma 2 During the execution of any fully strict Cilk program for
which no thread has more than one successor thread, any critical

thread must be the shallowest thread in a ready queue. Moreove~ the

critical thread is also]rst in the steal order

Proof For a thread t to be critical, the following conditions must
hold for the ready queue on the processor in which tis enqueued:

1.

2.

3.

4.

No right siblings oft are in the ready queue. If a right sibling
procedure v oft were in the ready queue, then the first thread

of v would not have been executed, and because the first thread

of v is a predecessor of t in D‘, t would not be critical.

No right siblings of any of t’s ancestors are in the ready queue,
This fact follows from the same reasoning as above.

No left siblings of any of t’s ancestors are in the ready queue.

This condition must hold because all of these siblings occur
before t‘s parent in the local execution order, and t’s parent
must have been executed for tto be critical.

No successor threads of t‘s ancestors are enabled. This condi-
tion must be true, because any successor thread must wait for

all children to complete before it is enabled. Since t has not
completed, no successor threads of t‘s ancestors are enabled,
This condition makes use of the fact that the computation is
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fully strict, which implies that the only thread to which t can

send its result is t‘s parent’s unique successor.

A consequence of these conditions is that no thread could possibly

be above t in the ready queue, because all threads above t are either
already executed, stolen, or not enabled. In t’s level, t is first in the
work-stealing order, because it is the rightmost thread at that level. ■

Theorem 3 For any number P of processors and any fidly strict
Cilk program in which each thread has at most one successo~ #the
program has work T1 and critical path length Tw, then Cilk’s work-

stealing scheduler executes the program in expected time E [TP] =

O(T1 /P + Tw ). Furthermore, for any c >0, the execution time is

TP = O(T1 /P + T- + lg P + lg(l/e)) with probability at least

1-6.

Proof This proof is just a straightforward application of the tech-
niques in [3], using our Lemma 2 as a substitute for Lemma 9 in [3].

Because the critical threads are first in the work-stealing order, they

are likely to be stolen (or executed locally) after a modest number of

steal requests. This fact can be shown formally using a delay sequence
argument. ■

Theorem 4 For any number P of processors and any fully strict

Cilk program in which each thread has at most one successo~ if the
program has critical path length TM and maximum closure size Smm,

then Cilk ’s work-stealing scheduler incurs expected communication

O(T~ PS~m). Furthermore, for any e >0, the communication cost

is O((TW + lg(l/c))PSmm) with probability at least 1 - E

Proof This proof is exactly analogous to the proof of Theorem 13

in [3]. We observe that at most O(T~ P) steal attempts occur in an

execution, and all communication costs can be associated with one

of these steal requests such that at most 0( S~u ) communication is

associated with each steal request. The high-probability bound is
analogous. 9

7 Conclusion

To produce high-performance parallel applications, programmers of-
ten focus on communication costs and execution time, quantities that

are dependent on specific machine configurations. We argue that a

programmer should think instead about work and critical path, ab-
stractions that can be used to characterize theperforrnanceof an al-

gorithm independent of the machine configuration. Cilk providesa
programming model in which work and critical path are observable
quantities, and it delivers guaranteed performance as a function of

these quantities. Work andcritical path have bccnused in the theory

community for years to analyze parallel algorithms [26]. Blelloch

[2] has developed a performance model for data-parallel computations

based onthese sametwo abstract measures. Hecites manyadvantages

tosucha model overmachine-based models. Cilkprovides a similar

performance model for the domain of asynchronous, multithreaded
computation.

Although Cilk offers performance guarantees, its current capa-
bilities are Iimited, andprograrnmers find its explicit continuation-
passing style to be onerous. Cilkisgood atexpressing andexecuting
dynamic, asynchronous, tree-like, MIMDcomputations, butit is not

yet ideal for more traditional parallel applications that can be pro-
grammed effectively in, for example, a message-passing, data-parallel,
or single-threaded, shared-memory style. We are currently working

onextending Cilk'scapabilities to broaden its applicability. A major
constraint is that we do not want new features to destroy Cilk’s guar-
anteesofperfonnance. Ourcurrent research focuses on implementing

“dag-consistent” shared memory, which allows programs to operate on

shared memory without costly communication or hardware support;

on providing a linguistic interface that produces continuation-passing

code for our runtime system from a more traditional call-return specifi-

cation of spawns; and on incorporating persistent threads and less strict

semantics in ways that do not destroy the guaranteed performance of

our scheduler. Recent information about Cilk is maintained on the

World Wide Web in page http: f /theory. lcs .mit. eduf”cilk.
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