The Language of CLINGO: Cardinality Expressions

For any formula $F(x)$ and any positive integer n, by

$$
n\{x: F(x)\}
$$

we denote the formula

$$
\exists x_{1} \cdots x_{n}\left(\bigwedge_{1 \leq i \leq n} F\left(x_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq n} x_{i} \neq x_{j}\right)
$$

which expresses that there exist at least n values of x such that $F(x)$. By

$$
\{x: F(x)\} n,
$$

where n is a nonnegative integer, we denote the formula

$$
\neg(n+1\{x: F(x)\})
$$

("there are at most n values of x such that $F(x)$ "). A conjunction of the form

$$
(m\{x: F(x)\}) \wedge(\{x: F(x)\} n)
$$

("the number of values of x such that $F(x)$ is between m and n ") can be written as

$$
m\{x: F(x)\} n .
$$

These abbreviations can be used in CLINGO programs, for example:

```
p(a;b;c).
{q(X)} :- p(X).
:- not 2 { <X> : q(X) } 2.
```

The stable models of this program represent the 2 -element subsets of $\{a, b, c\}$.
A pair of rules of the form

$$
\begin{aligned}
\{F(x)\} & \leftarrow G(x), \\
\perp & \leftarrow \neg(m\{F(x) \wedge G(x)\} n)
\end{aligned}
$$

can be written as

$$
m\{F(x): G(x)\} n
$$

and similarly when only one of the boundaries m, n is present. Using this abbreviation we can rewrite the CLINGO program above as

```
p(a;b;c).
2 { <X> : q(X) : p(X)} 2.
```

Problem 32 ${ }^{e}$. Write (and test!) a CLINGO program for generating cliques of cardinality $\geq n$.

Problem 33 ${ }^{e}$. A set of vertices in a graph is independent if no two of its elements are adjacent. Write a CLINGO program for generating independent sets of cardinality $\geq n$.

Here is a CLINGO program for grap coloring:

```
% File color
1 { <C> : color(X,C) : C=1..n } 1 :- vertex(X).
:- edge(X,Y), color(X,C), color(Y,C).
#hide. #show color(X,C).
```

The command line
\% clingo -c n=4 color graph
instructs clingo to determine whether the graph in file graph is 4-colorable.
Problem 34 ${ }^{e}$. File g_10_25 describes a graph with 10 vertices and 25 edges. Find a 5 -coloring of this graph that uses each color exactly twice.

