
CS395T, Spring 2011

The Davis-Putnam-Logemann-Loveland Procedure

A literal is an atom or a negated atom. A clause is a disjunction of literals
(possibly the empty disjunction ⊥). A formula is said to be in conjunctive
normal form (CNF) if it is a conjunction of clauses (possibly the empty
conjunction ⊤).

Many existing SAT solvers are based on the Davis-Putnam-Logemann-
Loveland procedure, or DPLL [Davis and Putnam, 1960, Davis et al., 1962].
It allows us to decide whether a CNF formula is satisfiable, and to find a
satisfying interpretation if it is.

For any CNF formula F and atom A, F |A stands for the formula obtained
from F by replacing all occurrences of A by ⊤ and simplifying the result by
removing

• all clauses containing the disjunctive term ⊤, and

• the disjunctive terms ¬⊤ in all remaining clauses.

Similarly, F |
¬A is the result of replacing A in F by ⊥ and simplifying the

result. For instance,

(p ∨ q ∨ ¬r) ∧ (¬p ∨ r)|
¬p = q ∨ ¬r.

If a CNF formula F contains a clause that consists of a single literal
(“unit clause”) then F can be simplified using the procedure called unit
propagation (Figure 1). In this procedure, U is a set of literals that does
not contain complementary pairs A, ¬A. To apply unit propagation to
a given CNF formula F0, Unit-Propagate is invoked with F = F0 and

Unit-Propagate(F, U)
while F contains no empty clause but has a unit clause L

F ← F |L;
U ← U ∪ {L}

end

Figure 1: Unit propagation

1



U = ∅. After every execution of the body of the loop, the conjunction of F

with the literals U remains equivalent to F0.
For instance, to apply unit propagation to

p ∧ (¬p ∨ ¬q) ∧ (¬q ∨ r)

we invoke Unit-Propagate with this formula as F and with ∅ as U . After
the first execution of the body of the loop,

F = ¬q ∧ (¬q ∨ r) and U = {p};

after the second iteration

F = ⊤ and U = {p,¬q}.

This computation shows that the given formula is equivalent to p ∧ ¬q.

There are two cases when the process of unit propagation alone is
sufficient for solving the satisfiability problem for F0. Consider the values of
F and U upon the termination of Unit-Propagate. First, if F = ⊤, as in
the example above, then F0 is satisfiable, and a satisfying interpretation can
be easily extracted from U . Second, if F contains the empty clause then F0

is not satisfiable.

Problem 1. Use unit propagation to decide whether the formula

p ∧ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

is satisfiable.

The Davis-Putnam-Logemann-Loveland procedure (Figure 2) is an
extension of the unit propagation method that can solve the satisfiability

DPLL(F, U)
Unit-propagate(F, U);
if F contains the empty clause then return;
if F = ⊤ then exit with a model of U ;
L ← a literal containing an atom from F ;
DPLL(F |L, U ∪ {L});
DPLL(F |

L
, U ∪ {L})

Figure 2: Davis-Putnam-Logemann-Loveland procedure

2



problem for any CNF formula. Like Unit-propagate, it is initially invoked
with F = F0 and U = ∅.

Consider, for instance, the application of the DPLL procedure to

(¬p ∨ q) ∧ (¬p ∨ r) ∧ (q ∨ r) ∧ (¬q ∨ ¬r).

First DPLL is called with this formula as F and with ∅ as U (Call 1).
After the call to Unit-propagate, the values of F and U remain the same.
Assume that the literal selected as L is p. Now DPLL is called recursively
with

q ∧ r ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

as F and {p} as U (Call 2). After the call to Unit-propagate, F turns
into the empty clause. Next DPLL is called with

(q ∨ r) ∧ (¬q ∨ ¬r)

as F and {¬p} as U (Call 3). After the call to Unit-propagate, F and U

remain the same. Assume that the literal selected as L is q. Then DPLL

is called with ¬r as F and {¬p, q} as U (Call 4). After the call to Unit-

propagate, F = ⊤ and U = {¬p, q,¬r}. The computation produces an
interpretation satisfying the given formula:

p q r

f t f

Problem 2. How would this computation be affected by selecting ¬p as L

in Call 1? By selecting ¬q as L in Call 3?

References

[Davis and Putnam, 1960] Martin Davis and Hillary Putnam. A computing
procedure for quantification theory. Journal of ACM, 7:201–215, 1960.

[Davis et al., 1962] Martin Davis, George Logemann, and Donald Loveland.
A machine program for theorem proving. Communications of the ACM,
5(7):394–397, 1962.

3


