Intelligent Retrieval from a Database, Part 4

By $K B_{2}$ we denote the set consisting of the following sentences:

1. $\forall x(\operatorname{Male}(x) \leftrightarrow x=A \vee x=M)$.
2. $\forall x y(\operatorname{Parent}(x, y) \leftrightarrow(x=S \wedge y=W) \vee(x=S \wedge y=A) \vee(x=W \wedge y=M)$.
3. $\forall x($ Female $(x) \leftrightarrow \neg \operatorname{Male}(x))$.
4. $\forall x y(\operatorname{Brother}(x, y) \leftrightarrow \exists z(\operatorname{Parent}(z, x) \wedge \operatorname{Parent}(z, y)) \wedge \operatorname{Male}(x) \wedge x \neq y)$.

The union of $K B_{2}$ with the unique name assumption

$$
\{S \neq W, S \neq A, S \neq M, W \neq A, W \neq M, A \neq M\}
$$

is correct and complete on the level of ground atoms. This set of formulas is essentially the completion of the logic program

```
Male (A),
Male(M),
Parent \((S, W)\),
Parent \((S, A)\),
\(\operatorname{Parent}(W, M)\),
Female \((x) \leftarrow \neg \operatorname{Male}(x)\),
\(\operatorname{Brother}(x, y) \leftarrow \operatorname{Parent}(z, x) \wedge \operatorname{Parent}(z, y) \wedge \operatorname{Male}(x) \wedge x \neq y\).
```

