General Definition of a Stable Model

Let Π be a logic program, let P_1, \ldots, P_n be the list of all predicate constants in its signature, and let p_1, \ldots, p_n be distinct predicate variables. By $\Pi^{\diamond}(p_1, \ldots, p_n)$ we denote the formula obtained by forming the conjuction of the universal closures of the rules of Π and then replacing the occurrences of P_1, \ldots, P_n that are not in the scope of any negation by the corresponding variables p_1, \ldots, p_n .

As in the case of positive programs, the stability formula for P_i relative to Π is the sentence

$$\forall \mathbf{x}(P_i(\mathbf{x}) \leftrightarrow \forall p_1 \cdots p_n(\Pi^\diamond(p_1, \dots, p_n) \to p_i(\mathbf{x}))),$$

where \mathbf{x} is a tuple of distinct object variables. A stable model of Π is an Herbrand interpretation that satisfies all stability formulas.

For instance, let Π be the program

$$\begin{aligned} &Person(A), \\ &Person(B), \\ &Male(A), \\ &Female(x) \leftarrow Person(x) \land \neg Male(x). \end{aligned}$$

Then $\Pi^{\diamond}(p, m, f)$ is

$$p(A) \wedge p(B) \wedge m(A) \wedge \forall x(p(x) \wedge \neg Male(x) \to f(x)),$$
(1)

and the stability formulas are

$$\begin{split} &\forall y(Person(y) \leftrightarrow \forall pmf(\Pi^{\diamond}(p,m,f) \rightarrow p(y)), \\ &\forall y(Male(y) \leftrightarrow \forall pmf(\Pi^{\diamond}(p,m,f) \rightarrow m(y)), \\ &\forall y(Female(y) \leftrightarrow \forall pmf(\Pi^{\diamond}(p,m,f) \rightarrow f(y)). \end{split}$$

The conjunction of the stability formulas with the unique name assumption $A \neq B$ is equivalent to the completion of Π , that is, to the set consisting of the formulas

$$\begin{aligned} &\forall x (Person(x) \leftrightarrow x = A \lor x = B), \\ &\forall x (Male(x) \leftrightarrow x = A), \\ &\forall x (Female(x) \leftrightarrow Person(x) \land \neg Male(x)), \\ &A \neq B. \end{aligned}$$

It follows that Π has one stable model:

 $\{Person(A), Person(B), Male(A), Female(B)\}.$

Problem 25. If we replace $\neg Male(x)$ in (1) with $\neg m(x)$, how will this affect the result of simplifying the stability formulas?

Problem 26. Simplify the stability formulas of the program

$$P(x) \leftarrow \neg Q(x), Q(x) \leftarrow \neg P(x).$$